{"title":"标签噪声下基于标签加权图的半监督分类学习","authors":"Naiyao Liang;Zuyuan Yang;Junhang Chen;Zhenni Li;Shengli Xie","doi":"10.1109/TBDATA.2023.3319249","DOIUrl":null,"url":null,"abstract":"Graph-based semi-supervised learning (GSSL) is a quite important technology due to its effectiveness in practice. Existing GSSL works often treat the given labels equally and ignore the unbalance importance of labels. In some inaccurate systems, the collected labels usually contain noise (noisy labels) and the methods treating labels equally suffer from the label noise. In this article, we propose a novel label-weighted learning method on graph for semi-supervised classification under label noise, which allows considering the contribution differences of labels. In particular, the label dependency of data is revealed by graph constraints. With the help of this label dependency, the proposed method develops the strategy of adaptive label weight, where label weights are assigned to labels adaptively. Accordingly, an efficient algorithm is developed to solve the proposed optimization objective, where each subproblem has a closed-form solution. Experimental results on a synthetic dataset and several real-world datasets show the advantage of the proposed method, compared to the state-of-the-art methods.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 1","pages":"55-65"},"PeriodicalIF":7.5000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-Weighted Graph-Based Learning for Semi-Supervised Classification Under Label Noise\",\"authors\":\"Naiyao Liang;Zuyuan Yang;Junhang Chen;Zhenni Li;Shengli Xie\",\"doi\":\"10.1109/TBDATA.2023.3319249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph-based semi-supervised learning (GSSL) is a quite important technology due to its effectiveness in practice. Existing GSSL works often treat the given labels equally and ignore the unbalance importance of labels. In some inaccurate systems, the collected labels usually contain noise (noisy labels) and the methods treating labels equally suffer from the label noise. In this article, we propose a novel label-weighted learning method on graph for semi-supervised classification under label noise, which allows considering the contribution differences of labels. In particular, the label dependency of data is revealed by graph constraints. With the help of this label dependency, the proposed method develops the strategy of adaptive label weight, where label weights are assigned to labels adaptively. Accordingly, an efficient algorithm is developed to solve the proposed optimization objective, where each subproblem has a closed-form solution. Experimental results on a synthetic dataset and several real-world datasets show the advantage of the proposed method, compared to the state-of-the-art methods.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"10 1\",\"pages\":\"55-65\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10265191/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10265191/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Label-Weighted Graph-Based Learning for Semi-Supervised Classification Under Label Noise
Graph-based semi-supervised learning (GSSL) is a quite important technology due to its effectiveness in practice. Existing GSSL works often treat the given labels equally and ignore the unbalance importance of labels. In some inaccurate systems, the collected labels usually contain noise (noisy labels) and the methods treating labels equally suffer from the label noise. In this article, we propose a novel label-weighted learning method on graph for semi-supervised classification under label noise, which allows considering the contribution differences of labels. In particular, the label dependency of data is revealed by graph constraints. With the help of this label dependency, the proposed method develops the strategy of adaptive label weight, where label weights are assigned to labels adaptively. Accordingly, an efficient algorithm is developed to solve the proposed optimization objective, where each subproblem has a closed-form solution. Experimental results on a synthetic dataset and several real-world datasets show the advantage of the proposed method, compared to the state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.