Abimbola Grace Oyeyi, Hanaa Khaleel Alwan Al-Bayati, Frank Mi-Way Ni, Susan Tighe
{"title":"轻量泡沫混凝土底基柔性路面临界响应的环境影响","authors":"Abimbola Grace Oyeyi, Hanaa Khaleel Alwan Al-Bayati, Frank Mi-Way Ni, Susan Tighe","doi":"10.1139/cjce-2023-0027","DOIUrl":null,"url":null,"abstract":"Previous analytical studies have demonstrated that low-density lightweight cellular concrete (LCC) subbase pavements can support up to 20 times more traffic loads than unbound granular subbase pavements while protecting the pavement subgrade from adverse freeze–thaw effects in cold regions. This study examines the possibility of providing better-performing pavements on the field through the construction, instrumentation, and monitoring of flexible pavement sections incorporating three LCC densities (400, 475, and 600 kg/m³) as subbase material compared with unbound granular material in Canada. The effects of daily and seasonal temperatures on pavement critical responses to stress and strains were evaluated. The findings showed that these LCC pavements reduced asphalt concrete tensile strain by over two times compared with unbound granular pavements, and that strain increased with a daily temperature increase. Daily subgrade pressure (stress) change was reduced by up to 68%. The study concluded that longer life pavements could be achieved with LCC subbase thicknesses ≥250 mm.","PeriodicalId":9414,"journal":{"name":"Canadian Journal of Civil Engineering","volume":"221 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Impact on Critical Responses of Lightweight Cellular Concrete Subbase Flexible Pavements\",\"authors\":\"Abimbola Grace Oyeyi, Hanaa Khaleel Alwan Al-Bayati, Frank Mi-Way Ni, Susan Tighe\",\"doi\":\"10.1139/cjce-2023-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous analytical studies have demonstrated that low-density lightweight cellular concrete (LCC) subbase pavements can support up to 20 times more traffic loads than unbound granular subbase pavements while protecting the pavement subgrade from adverse freeze–thaw effects in cold regions. This study examines the possibility of providing better-performing pavements on the field through the construction, instrumentation, and monitoring of flexible pavement sections incorporating three LCC densities (400, 475, and 600 kg/m³) as subbase material compared with unbound granular material in Canada. The effects of daily and seasonal temperatures on pavement critical responses to stress and strains were evaluated. The findings showed that these LCC pavements reduced asphalt concrete tensile strain by over two times compared with unbound granular pavements, and that strain increased with a daily temperature increase. Daily subgrade pressure (stress) change was reduced by up to 68%. The study concluded that longer life pavements could be achieved with LCC subbase thicknesses ≥250 mm.\",\"PeriodicalId\":9414,\"journal\":{\"name\":\"Canadian Journal of Civil Engineering\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cjce-2023-0027\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cjce-2023-0027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Environmental Impact on Critical Responses of Lightweight Cellular Concrete Subbase Flexible Pavements
Previous analytical studies have demonstrated that low-density lightweight cellular concrete (LCC) subbase pavements can support up to 20 times more traffic loads than unbound granular subbase pavements while protecting the pavement subgrade from adverse freeze–thaw effects in cold regions. This study examines the possibility of providing better-performing pavements on the field through the construction, instrumentation, and monitoring of flexible pavement sections incorporating three LCC densities (400, 475, and 600 kg/m³) as subbase material compared with unbound granular material in Canada. The effects of daily and seasonal temperatures on pavement critical responses to stress and strains were evaluated. The findings showed that these LCC pavements reduced asphalt concrete tensile strain by over two times compared with unbound granular pavements, and that strain increased with a daily temperature increase. Daily subgrade pressure (stress) change was reduced by up to 68%. The study concluded that longer life pavements could be achieved with LCC subbase thicknesses ≥250 mm.
期刊介绍:
The Canadian Journal of Civil Engineering is the official journal of the Canadian Society for Civil Engineering. It contains articles on environmental engineering, hydrotechnical engineering, structural engineering, construction engineering, engineering mechanics, engineering materials, and history of civil engineering. Contributors include recognized researchers and practitioners in industry, government, and academia. New developments in engineering design and construction are also featured.