{"title":"热处理对aisi 316l奥氏体不锈钢腐蚀行为的影响","authors":"Mariano Nicolás Inés, Graciela Analía Mansilla","doi":"10.36547/ams.29.3.1803","DOIUrl":null,"url":null,"abstract":"Heat treatments of AISI 316L samples were conducted at 900°C with slow cooling in air to induce varied precipitation of chromium-rich carbide particles at grain boundaries, resulting in a microstructure susceptible to intergranular corrosion. The corrosion behavior of the material in this state was investigated in a salt spray chamber containing 5% NaCl. The temperature inside the chamber was set at 35°C, while the saturated air temperature was recorded at 47°C. Samples were periodically extracted for observation and analysis using a stereoscopic magnifying glass, optical microscope, and scanning electron microscope. The results revealed the detrimental effect of chloride ions on the corrosion behavior of these stainless steels. Metallographic examination of corroded specimens after the salt spray test confirmed that the passive layer's breakdown was responsible for the intergranular corrosion occurring along preferential paths of chromium carbides.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INCIDENCE OF HEAT TREATMENT ON THE CORROSIVE BEHAVIOR OF AISI 316L AUSTENITIC STAINLESS STEEL\",\"authors\":\"Mariano Nicolás Inés, Graciela Analía Mansilla\",\"doi\":\"10.36547/ams.29.3.1803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat treatments of AISI 316L samples were conducted at 900°C with slow cooling in air to induce varied precipitation of chromium-rich carbide particles at grain boundaries, resulting in a microstructure susceptible to intergranular corrosion. The corrosion behavior of the material in this state was investigated in a salt spray chamber containing 5% NaCl. The temperature inside the chamber was set at 35°C, while the saturated air temperature was recorded at 47°C. Samples were periodically extracted for observation and analysis using a stereoscopic magnifying glass, optical microscope, and scanning electron microscope. The results revealed the detrimental effect of chloride ions on the corrosion behavior of these stainless steels. Metallographic examination of corroded specimens after the salt spray test confirmed that the passive layer's breakdown was responsible for the intergranular corrosion occurring along preferential paths of chromium carbides.\",\"PeriodicalId\":44511,\"journal\":{\"name\":\"Acta Metallurgica Slovaca\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36547/ams.29.3.1803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/ams.29.3.1803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
INCIDENCE OF HEAT TREATMENT ON THE CORROSIVE BEHAVIOR OF AISI 316L AUSTENITIC STAINLESS STEEL
Heat treatments of AISI 316L samples were conducted at 900°C with slow cooling in air to induce varied precipitation of chromium-rich carbide particles at grain boundaries, resulting in a microstructure susceptible to intergranular corrosion. The corrosion behavior of the material in this state was investigated in a salt spray chamber containing 5% NaCl. The temperature inside the chamber was set at 35°C, while the saturated air temperature was recorded at 47°C. Samples were periodically extracted for observation and analysis using a stereoscopic magnifying glass, optical microscope, and scanning electron microscope. The results revealed the detrimental effect of chloride ions on the corrosion behavior of these stainless steels. Metallographic examination of corroded specimens after the salt spray test confirmed that the passive layer's breakdown was responsible for the intergranular corrosion occurring along preferential paths of chromium carbides.