天冬酰胺和一氧化氮共同增强抗氧化能力和氮代谢,从而提高棉花的抗旱性:长期田间试验的证据

IF 4 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Food and Energy Security Pub Date : 2023-09-12 DOI:10.1002/fes3.502
Sabri Akin, Cengiz Kaya
{"title":"天冬酰胺和一氧化氮共同增强抗氧化能力和氮代谢,从而提高棉花的抗旱性:长期田间试验的证据","authors":"Sabri Akin,&nbsp;Cengiz Kaya","doi":"10.1002/fes3.502","DOIUrl":null,"url":null,"abstract":"<p>Asparagine (Asn) and nitric oxide (NO) can enhance plant tolerance to abiotic stress, but their interaction is not well understood. Cotton is a vital resource for the textile industry, but its yield is reduced by drought stress, which could threaten its global supply in a warming and stressful world. Improving cotton's drought tolerance is crucial for supporting the textile industry. Two simultaneous field experiments were conducted to study the effect of Asn and sodium nitroprusside (SNP), a NO donor, on cotton's drought tolerance. Two irrigation treatments were applied: control (C: 100% A pan) and drought stress (50% A pan). The plants were also sprayed with two plant stimulants before imposing drought stress: Mock control, 20 mM Asn, and 0.2 mM SNP, either alone or together. Drought stress impaired plant growth, photosynthesis, yield, nitrogen metabolism, and antioxidant defense, while increasing oxidative stress and free amino acid levels. However, Asn and SNP treatments alleviated these negative effects and improved antioxidant enzyme activity, plant growth, yield, and nitrogen content. The Asn + SNP treatment also increased irrigation water productivity under water-limited conditions, suggesting its potential for enhancing water use efficiency in cotton production. The combined treatment was more effective than the single treatments, indicating a synergistic effect of Asn and SNP in enhancing drought tolerance in cotton. These results imply that Asn and SNP could be useful tools for sustaining cotton production under drought conditions by boosting nitrogen metabolism and antioxidant defense, thereby contributing to the global supply of cotton and supporting the textile industry.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.502","citationCount":"0","resultStr":"{\"title\":\"Asparagine and nitric oxide jointly enhance antioxidant capacity and nitrogen metabolism to improve drought resistance in cotton: Evidence from long-term field trials\",\"authors\":\"Sabri Akin,&nbsp;Cengiz Kaya\",\"doi\":\"10.1002/fes3.502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Asparagine (Asn) and nitric oxide (NO) can enhance plant tolerance to abiotic stress, but their interaction is not well understood. Cotton is a vital resource for the textile industry, but its yield is reduced by drought stress, which could threaten its global supply in a warming and stressful world. Improving cotton's drought tolerance is crucial for supporting the textile industry. Two simultaneous field experiments were conducted to study the effect of Asn and sodium nitroprusside (SNP), a NO donor, on cotton's drought tolerance. Two irrigation treatments were applied: control (C: 100% A pan) and drought stress (50% A pan). The plants were also sprayed with two plant stimulants before imposing drought stress: Mock control, 20 mM Asn, and 0.2 mM SNP, either alone or together. Drought stress impaired plant growth, photosynthesis, yield, nitrogen metabolism, and antioxidant defense, while increasing oxidative stress and free amino acid levels. However, Asn and SNP treatments alleviated these negative effects and improved antioxidant enzyme activity, plant growth, yield, and nitrogen content. The Asn + SNP treatment also increased irrigation water productivity under water-limited conditions, suggesting its potential for enhancing water use efficiency in cotton production. The combined treatment was more effective than the single treatments, indicating a synergistic effect of Asn and SNP in enhancing drought tolerance in cotton. These results imply that Asn and SNP could be useful tools for sustaining cotton production under drought conditions by boosting nitrogen metabolism and antioxidant defense, thereby contributing to the global supply of cotton and supporting the textile industry.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.502\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.502\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.502","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

天冬酰胺(Asn)和一氧化氮(NO)可以增强植物对非生物胁迫的耐受性,但它们之间的相互作用还不十分清楚。棉花是纺织业的重要资源,但其产量会因干旱胁迫而减少,在气候变暖和压力增大的世界里,这可能会威胁到棉花的全球供应。提高棉花的抗旱性对支持纺织业至关重要。我们同时进行了两项田间试验,研究 Asn 和硝普钠(一种氮氧化物供体)对棉花耐旱性的影响。实验采用了两种灌溉处理:对照(C:100% A pan)和干旱胁迫(50% A pan)。在施加干旱胁迫之前,还向植株喷洒了两种植物刺激剂:模拟对照、20 mM Asn 和 0.2 mM SNP,可单独使用,也可同时使用。干旱胁迫损害了植物的生长、光合作用、产量、氮代谢和抗氧化防御能力,同时增加了氧化应激和游离氨基酸水平。然而,Asn 和 SNP 处理减轻了这些负面影响,提高了抗氧化酶活性、植物生长、产量和氮含量。Asn + SNP 处理还提高了限水条件下的灌溉水生产率,这表明它具有提高棉花生产用水效率的潜力。联合处理比单一处理更有效,表明 Asn 和 SNP 在提高棉花抗旱性方面具有协同作用。这些结果表明,Asn 和 SNP 可通过促进氮代谢和抗氧化防御,成为干旱条件下维持棉花生产的有用工具,从而有助于全球棉花供应和支持纺织工业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asparagine and nitric oxide jointly enhance antioxidant capacity and nitrogen metabolism to improve drought resistance in cotton: Evidence from long-term field trials

Asparagine (Asn) and nitric oxide (NO) can enhance plant tolerance to abiotic stress, but their interaction is not well understood. Cotton is a vital resource for the textile industry, but its yield is reduced by drought stress, which could threaten its global supply in a warming and stressful world. Improving cotton's drought tolerance is crucial for supporting the textile industry. Two simultaneous field experiments were conducted to study the effect of Asn and sodium nitroprusside (SNP), a NO donor, on cotton's drought tolerance. Two irrigation treatments were applied: control (C: 100% A pan) and drought stress (50% A pan). The plants were also sprayed with two plant stimulants before imposing drought stress: Mock control, 20 mM Asn, and 0.2 mM SNP, either alone or together. Drought stress impaired plant growth, photosynthesis, yield, nitrogen metabolism, and antioxidant defense, while increasing oxidative stress and free amino acid levels. However, Asn and SNP treatments alleviated these negative effects and improved antioxidant enzyme activity, plant growth, yield, and nitrogen content. The Asn + SNP treatment also increased irrigation water productivity under water-limited conditions, suggesting its potential for enhancing water use efficiency in cotton production. The combined treatment was more effective than the single treatments, indicating a synergistic effect of Asn and SNP in enhancing drought tolerance in cotton. These results imply that Asn and SNP could be useful tools for sustaining cotton production under drought conditions by boosting nitrogen metabolism and antioxidant defense, thereby contributing to the global supply of cotton and supporting the textile industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Energy Security
Food and Energy Security Energy-Renewable Energy, Sustainability and the Environment
CiteScore
9.30
自引率
4.00%
发文量
76
审稿时长
19 weeks
期刊介绍: Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor. Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights. Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge. Examples of areas covered in Food and Energy Security include: • Agronomy • Biotechnological Approaches • Breeding & Genetics • Climate Change • Quality and Composition • Food Crops and Bioenergy Feedstocks • Developmental, Physiology and Biochemistry • Functional Genomics • Molecular Biology • Pest and Disease Management • Post Harvest Biology • Soil Science • Systems Biology
期刊最新文献
Does Adoption of Multiple Climate-Smart Agriculture Practices Improve Rural Farm Households' Food Security in Ethiopia? Food Security Status and Associated Drivers Among Climate Migrant Households in Bangladesh: Insight From Urban Informal Settlements Respective Advantages of Growing Different Green Manure With Nitrogen Fertilization in Cotton-Based Cropping Systems: Insights From a Three-Year Field Study Assessment of Sustainability in the Supply Chain of Sweet Red Pepper Paste Production With Exergy and Life Cycle Analyses Wheat Straw Incorporation Coupled With Direct Seeding Method Influence Nitrogen Uptake and Translocation in Rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1