测试数据克隆作为均值模型随机波动估计的基础

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Discrete Dynamics in Nature and Society Pub Date : 2023-09-12 DOI:10.1155/2023/7657430
E. Romero, E. Ropero-Moriones
{"title":"测试数据克隆作为均值模型随机波动估计的基础","authors":"E. Romero, E. Ropero-Moriones","doi":"10.1155/2023/7657430","DOIUrl":null,"url":null,"abstract":"Developed as a refinement of stochastic volatility (SV) models, the stochastic volatility in mean (SVM) model incorporates the latent volatility as an explanatory variable in both the mean and variance equations. It, therefore, provides a way of assessing the relationship between returns and volatility, albeit at the expense of complicating the estimation process. This study introduces a Bayesian methodology that leverages data-cloning algorithms to obtain maximum likelihood estimates for SV and SVM model parameters. Adopting this Bayesian framework allows approximate maximum likelihood estimates to be attained without the need to maximize pseudo likelihood functions. The key contribution this paper makes is that it proposes an estimator for the SVM model, one that uses Bayesian algorithms to approximate the maximum likelihood estimate with great effect. Notably, the estimates it provides yield superior outcomes than those derived from the Markov chain Monte Carlo (MCMC) method in terms of standard errors, all while being unaffected by the selection of prior distributions.","PeriodicalId":55177,"journal":{"name":"Discrete Dynamics in Nature and Society","volume":"9 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing Data Cloning as the Basis of an Estimator for the Stochastic Volatility in Mean Model\",\"authors\":\"E. Romero, E. Ropero-Moriones\",\"doi\":\"10.1155/2023/7657430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developed as a refinement of stochastic volatility (SV) models, the stochastic volatility in mean (SVM) model incorporates the latent volatility as an explanatory variable in both the mean and variance equations. It, therefore, provides a way of assessing the relationship between returns and volatility, albeit at the expense of complicating the estimation process. This study introduces a Bayesian methodology that leverages data-cloning algorithms to obtain maximum likelihood estimates for SV and SVM model parameters. Adopting this Bayesian framework allows approximate maximum likelihood estimates to be attained without the need to maximize pseudo likelihood functions. The key contribution this paper makes is that it proposes an estimator for the SVM model, one that uses Bayesian algorithms to approximate the maximum likelihood estimate with great effect. Notably, the estimates it provides yield superior outcomes than those derived from the Markov chain Monte Carlo (MCMC) method in terms of standard errors, all while being unaffected by the selection of prior distributions.\",\"PeriodicalId\":55177,\"journal\":{\"name\":\"Discrete Dynamics in Nature and Society\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Dynamics in Nature and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7657430\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Dynamics in Nature and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7657430","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

作为随机波动率(SV)模型的改进,随机平均波动率(SVM)模型在均值和方差方程中都将潜在波动率作为解释变量。因此,它提供了一种评估回报率与波动性之间关系的方法,尽管代价是使估算过程复杂化。本研究引入了贝叶斯方法,该方法利用数据克隆算法获得SV和SVM模型参数的最大似然估计。采用贝叶斯框架可以在不需要最大化伪似然函数的情况下获得近似的最大似然估计。本文的关键贡献在于提出了一种SVM模型的估计器,该估计器使用贝叶斯算法近似最大似然估计,效果很好。值得注意的是,就标准误差而言,它提供的估计结果优于马尔科夫链蒙特卡罗(MCMC)方法,同时不受先验分布选择的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing Data Cloning as the Basis of an Estimator for the Stochastic Volatility in Mean Model
Developed as a refinement of stochastic volatility (SV) models, the stochastic volatility in mean (SVM) model incorporates the latent volatility as an explanatory variable in both the mean and variance equations. It, therefore, provides a way of assessing the relationship between returns and volatility, albeit at the expense of complicating the estimation process. This study introduces a Bayesian methodology that leverages data-cloning algorithms to obtain maximum likelihood estimates for SV and SVM model parameters. Adopting this Bayesian framework allows approximate maximum likelihood estimates to be attained without the need to maximize pseudo likelihood functions. The key contribution this paper makes is that it proposes an estimator for the SVM model, one that uses Bayesian algorithms to approximate the maximum likelihood estimate with great effect. Notably, the estimates it provides yield superior outcomes than those derived from the Markov chain Monte Carlo (MCMC) method in terms of standard errors, all while being unaffected by the selection of prior distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Dynamics in Nature and Society
Discrete Dynamics in Nature and Society 综合性期刊-数学跨学科应用
CiteScore
3.00
自引率
0.00%
发文量
598
审稿时长
3 months
期刊介绍: The main objective of Discrete Dynamics in Nature and Society is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. The journal intends to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal provides a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.
期刊最新文献
Early Warning Simulation of Urban Vulnerability in Coal-Resource-Based Cities Based on System Dynamics Enhancing Geopolymer Mix Optimization: Integration of the Plackett–Burman Method and Response Surface Methodology for Sustainable Construction Materials Relationship between the Significant Solutions of Static Traffic Assignment Problems for Mixed Traffic Flow of Connected and Automated Vehicles and Human-Driven Vehicles Recycling Mode Choice in a Textile and Apparel Closed-Loop Supply Chain considering Blockchain Analysis of the Dynamical Properties of Discrete Predator-Prey Systems with Fear Effects and Refuges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1