{"title":"石灰化对作物产量、植物病害、土壤结构和磷淋失风险的长期影响","authors":"Åsa Olsson Nyström, Jens Blomquist, Lars Persson, Anita Gunnarsson, Kerstin Berglund","doi":"10.23986/afsci.130983","DOIUrl":null,"url":null,"abstract":"This study examined the long-term effects of applying structure lime (mixture of ~80% CaCO3 and 20% Ca(OH)2) and ground limestone (CaCO3) on soil aggregate stability and risk of phosphorus (P) losses 5–7 years after liming, incidence of soil-borne diseases and yield in winter wheat (Tritium aestivum), oilseed rape (Brassica napus) and sugar beet (Beta vulgaris). Lime was applied in 13 field trials in Sweden 2013–2015 and soil characteristics and crop yield were monitored until 2021. Seedbed (0–4 cm depth) aggregate (2–5 mm size) stability was improved to the same extent with both lime treatments compared to the untreated control, sampled 5–7 years after liming. Analyses and estimations of different P fractions (total P, PO4-P, and particulate P) in leachate following simulated rainfall events on undisturbed topsoil cores sampled 6–8 years after liming revealed lower total P and particulate P concentrations in both lime treatments compared to the untreated control. Two sugar beet trial sites with soil pH ≤7.2 before liming showed an increase in sugar yield for structure lime and ground limestone as an effect of increased concentration of soil potassium (K-AL) and/or lower Aphanomyces root rot potential compared to the untreated control. The yield of winter wheat was not affected by the application of either type of lime at sites with pH >7.2 but the yield of oilseed rape decreased after the application of structure lime.","PeriodicalId":7393,"journal":{"name":"Agricultural and Food Science","volume":"95 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term effects of liming on crop yield, plant diseases, soil structure and risk of phosphorus leaching\",\"authors\":\"Åsa Olsson Nyström, Jens Blomquist, Lars Persson, Anita Gunnarsson, Kerstin Berglund\",\"doi\":\"10.23986/afsci.130983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the long-term effects of applying structure lime (mixture of ~80% CaCO3 and 20% Ca(OH)2) and ground limestone (CaCO3) on soil aggregate stability and risk of phosphorus (P) losses 5–7 years after liming, incidence of soil-borne diseases and yield in winter wheat (Tritium aestivum), oilseed rape (Brassica napus) and sugar beet (Beta vulgaris). Lime was applied in 13 field trials in Sweden 2013–2015 and soil characteristics and crop yield were monitored until 2021. Seedbed (0–4 cm depth) aggregate (2–5 mm size) stability was improved to the same extent with both lime treatments compared to the untreated control, sampled 5–7 years after liming. Analyses and estimations of different P fractions (total P, PO4-P, and particulate P) in leachate following simulated rainfall events on undisturbed topsoil cores sampled 6–8 years after liming revealed lower total P and particulate P concentrations in both lime treatments compared to the untreated control. Two sugar beet trial sites with soil pH ≤7.2 before liming showed an increase in sugar yield for structure lime and ground limestone as an effect of increased concentration of soil potassium (K-AL) and/or lower Aphanomyces root rot potential compared to the untreated control. The yield of winter wheat was not affected by the application of either type of lime at sites with pH >7.2 but the yield of oilseed rape decreased after the application of structure lime.\",\"PeriodicalId\":7393,\"journal\":{\"name\":\"Agricultural and Food Science\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Food Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23986/afsci.130983\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23986/afsci.130983","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Long-term effects of liming on crop yield, plant diseases, soil structure and risk of phosphorus leaching
This study examined the long-term effects of applying structure lime (mixture of ~80% CaCO3 and 20% Ca(OH)2) and ground limestone (CaCO3) on soil aggregate stability and risk of phosphorus (P) losses 5–7 years after liming, incidence of soil-borne diseases and yield in winter wheat (Tritium aestivum), oilseed rape (Brassica napus) and sugar beet (Beta vulgaris). Lime was applied in 13 field trials in Sweden 2013–2015 and soil characteristics and crop yield were monitored until 2021. Seedbed (0–4 cm depth) aggregate (2–5 mm size) stability was improved to the same extent with both lime treatments compared to the untreated control, sampled 5–7 years after liming. Analyses and estimations of different P fractions (total P, PO4-P, and particulate P) in leachate following simulated rainfall events on undisturbed topsoil cores sampled 6–8 years after liming revealed lower total P and particulate P concentrations in both lime treatments compared to the untreated control. Two sugar beet trial sites with soil pH ≤7.2 before liming showed an increase in sugar yield for structure lime and ground limestone as an effect of increased concentration of soil potassium (K-AL) and/or lower Aphanomyces root rot potential compared to the untreated control. The yield of winter wheat was not affected by the application of either type of lime at sites with pH >7.2 but the yield of oilseed rape decreased after the application of structure lime.
期刊介绍:
Agricultural and Food Science (AFSci) publishes original research reports on agriculture and food research related to primary production and which have a northern dimension. The fields within the scope of the journal include agricultural economics, agricultural engineering, animal science, environmental science, horticulture, plant and soil science and primary production-related food science. Papers covering both basic and applied research are welcome.
AFSci is published by the Scientific Agricultural Society of Finland. AFSci, former The Journal of the Scientific Agricultural Society of Finland, has been published regularly since 1928. Alongside the printed version, online publishing began in 2000. Since the year 2010 Agricultural and Food Science has only been available online as an Open Access journal, provided to the user free of charge. Full texts are available online from 1945 on.