{"title":"通过在氮配位硬碳空心球中注入硫来激发表面驱动的电容过程,实现了比锂更优越的碱金属离子存储","authors":"Gongrui Wang, Jingyu Gao, Wentao Wang, Zongzhi Tao, Xiaoyue He, Liang Shi, Genqiang Zhang","doi":"10.1002/bte2.20230031","DOIUrl":null,"url":null,"abstract":"<p>Owing to the specific merits of low cost, abundant sources, and high physicochemical stability, carbonaceous materials are promising anode candidates for K<sup>+</sup>/Na<sup>+</sup> storage, whereas their limited specific capacity and unfavorable rate capability remain challenging for future applications. Herein, the sulfur implantation in N-coordinated hard carbon hollow spheres (SN-CHS) has been realized for evoking a surface-driven capacitive process, which greatly improves K<sup>+</sup>/Na<sup>+</sup> storage performance. Specifically, the SN-CHS electrodes deliver a high specific capacity of 480.5/460.9 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, preferred rate performance of 316.8/237.4 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>, and high-rate cycling stability of 87.9%/87.2% capacity retention after 2500/1500 cycles at 2 A g<sup>−1</sup> for K<sup>+</sup>/Na<sup>+</sup> storage, respectively. The underlying ion storage mechanisms are studied by systematical experimental data combined with theoretical simulation results, where the multiple active sites, improved electronic conductivity, and fast ion absorption/diffusion kinetics are major contributors. More importantly, the potassium ion hybrid capacitor consisting of SN-CHS anode and activated carbon cathode deliver an outstanding energy/power density (189.8 Wh kg<sup>−1</sup> at 213.5 W kg<sup>−1</sup> and 9495 W kg<sup>−1</sup> with 53.9 Wh kg<sup>−1</sup> retained) and remarkable cycling stability. This contribution not only flourishes the prospective synthesis strategies for advanced hard carbons but also facilitates the upgrading of next-generation stationary power applications.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230031","citationCount":"0","resultStr":"{\"title\":\"Evoking surface-driven capacitive process through sulfur implantation into nitrogen-coordinated hard carbon hollow spheres achieves superior alkali metal ion storage beyond lithium\",\"authors\":\"Gongrui Wang, Jingyu Gao, Wentao Wang, Zongzhi Tao, Xiaoyue He, Liang Shi, Genqiang Zhang\",\"doi\":\"10.1002/bte2.20230031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Owing to the specific merits of low cost, abundant sources, and high physicochemical stability, carbonaceous materials are promising anode candidates for K<sup>+</sup>/Na<sup>+</sup> storage, whereas their limited specific capacity and unfavorable rate capability remain challenging for future applications. Herein, the sulfur implantation in N-coordinated hard carbon hollow spheres (SN-CHS) has been realized for evoking a surface-driven capacitive process, which greatly improves K<sup>+</sup>/Na<sup>+</sup> storage performance. Specifically, the SN-CHS electrodes deliver a high specific capacity of 480.5/460.9 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, preferred rate performance of 316.8/237.4 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>, and high-rate cycling stability of 87.9%/87.2% capacity retention after 2500/1500 cycles at 2 A g<sup>−1</sup> for K<sup>+</sup>/Na<sup>+</sup> storage, respectively. The underlying ion storage mechanisms are studied by systematical experimental data combined with theoretical simulation results, where the multiple active sites, improved electronic conductivity, and fast ion absorption/diffusion kinetics are major contributors. More importantly, the potassium ion hybrid capacitor consisting of SN-CHS anode and activated carbon cathode deliver an outstanding energy/power density (189.8 Wh kg<sup>−1</sup> at 213.5 W kg<sup>−1</sup> and 9495 W kg<sup>−1</sup> with 53.9 Wh kg<sup>−1</sup> retained) and remarkable cycling stability. This contribution not only flourishes the prospective synthesis strategies for advanced hard carbons but also facilitates the upgrading of next-generation stationary power applications.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"2 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要碳质材料具有成本低、来源丰富、物理化学稳定性高等特点,是K + /Na +阳极的理想材料,但其有限的比容量和速率性能仍是未来应用的挑战。本文将硫注入到N -配位硬碳空心球(SN - CHS)中,实现了表面驱动的电容化过程,大大提高了K + /Na +的存储性能。具体来说,SN‐CHS电极在0.1 ag−1时的比容量为480.5/460.9 mAh g−1,在5 ag−1时的优选倍率性能为316.8/237.4 mAh g−1,在2 ag−1下的2500/1500次循环后,K + /Na +存储的高倍率循环稳定性分别为87.9%/87.2%。通过系统的实验数据结合理论模拟结果研究了潜在的离子储存机制,其中多个活性位点、提高的电子导电性和快速的离子吸收/扩散动力学是主要的贡献因素。更重要的是,由SN‐CHS阳极和活性炭阴极组成的钾离子混合电容器具有出色的能量/功率密度(213.5 W kg - 1时为189.8 Wh kg - 1,保留53.9 Wh kg - 1时为9495 W kg - 1)和出色的循环稳定性。这一贡献不仅繁荣了先进硬碳的前瞻性合成策略,而且促进了下一代固定电源应用的升级。
Evoking surface-driven capacitive process through sulfur implantation into nitrogen-coordinated hard carbon hollow spheres achieves superior alkali metal ion storage beyond lithium
Owing to the specific merits of low cost, abundant sources, and high physicochemical stability, carbonaceous materials are promising anode candidates for K+/Na+ storage, whereas their limited specific capacity and unfavorable rate capability remain challenging for future applications. Herein, the sulfur implantation in N-coordinated hard carbon hollow spheres (SN-CHS) has been realized for evoking a surface-driven capacitive process, which greatly improves K+/Na+ storage performance. Specifically, the SN-CHS electrodes deliver a high specific capacity of 480.5/460.9 mAh g−1 at 0.1 A g−1, preferred rate performance of 316.8/237.4 mAh g−1 at 5 A g−1, and high-rate cycling stability of 87.9%/87.2% capacity retention after 2500/1500 cycles at 2 A g−1 for K+/Na+ storage, respectively. The underlying ion storage mechanisms are studied by systematical experimental data combined with theoretical simulation results, where the multiple active sites, improved electronic conductivity, and fast ion absorption/diffusion kinetics are major contributors. More importantly, the potassium ion hybrid capacitor consisting of SN-CHS anode and activated carbon cathode deliver an outstanding energy/power density (189.8 Wh kg−1 at 213.5 W kg−1 and 9495 W kg−1 with 53.9 Wh kg−1 retained) and remarkable cycling stability. This contribution not only flourishes the prospective synthesis strategies for advanced hard carbons but also facilitates the upgrading of next-generation stationary power applications.