工业制造中的增强现实-基于ar的质量控制/基于技术适用性的装配的应用领域识别

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY Advances in Science and Technology-Research Journal Pub Date : 2023-10-02 DOI:10.4028/p-6wb7q2
Phuong Thao Ho, José Antonio Albajez, Jorge Santolaria Mazo, José Antonio Yagüe-Fabra
{"title":"工业制造中的增强现实-基于ar的质量控制/基于技术适用性的装配的应用领域识别","authors":"Phuong Thao Ho, José Antonio Albajez, Jorge Santolaria Mazo, José Antonio Yagüe-Fabra","doi":"10.4028/p-6wb7q2","DOIUrl":null,"url":null,"abstract":"Augmented Reality (AR) has started to be gradually utilized in industrial manufacturing. However, the gap between novel stage and industrial AR-based applications must be comprehensively solved. In this study, the task technology fit (TTF) and method of time measurement (MTM) are applied and put together to create a comprehensive map demonstrating the relationship between manufacturing tasks and AR-solution features. In addition, this map will support exploring the suitability of AR-based solutions and identifying the application areas of AR for industrial manufacturing, primarily focused on quality control, metrology and assembly tasks. By considering both the viewpoint of developers/users and the scientific principles underlying manufacturing tasks in this comprehensive map, the usability and effectiveness of the final AR solution are also ensured at an early stage of AR-based application development.As a result, this paper provides a useful system to utilize AR capabilities for more complex-multistep tasks in a standardized way. Thus, more potential development and improvement of AR-based solutions for quality 4.0, virtual metrology, and complex assemblies in an industrial manufacturing context could be holistically established and built.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":"25 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented Reality in Industrial Manufacturing - Identification of Application Areas for AR-Based Quality Control/Assembly Based on Technology Suitability\",\"authors\":\"Phuong Thao Ho, José Antonio Albajez, Jorge Santolaria Mazo, José Antonio Yagüe-Fabra\",\"doi\":\"10.4028/p-6wb7q2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmented Reality (AR) has started to be gradually utilized in industrial manufacturing. However, the gap between novel stage and industrial AR-based applications must be comprehensively solved. In this study, the task technology fit (TTF) and method of time measurement (MTM) are applied and put together to create a comprehensive map demonstrating the relationship between manufacturing tasks and AR-solution features. In addition, this map will support exploring the suitability of AR-based solutions and identifying the application areas of AR for industrial manufacturing, primarily focused on quality control, metrology and assembly tasks. By considering both the viewpoint of developers/users and the scientific principles underlying manufacturing tasks in this comprehensive map, the usability and effectiveness of the final AR solution are also ensured at an early stage of AR-based application development.As a result, this paper provides a useful system to utilize AR capabilities for more complex-multistep tasks in a standardized way. Thus, more potential development and improvement of AR-based solutions for quality 4.0, virtual metrology, and complex assemblies in an industrial manufacturing context could be holistically established and built.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-6wb7q2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-6wb7q2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

增强现实技术(AR)已开始逐步应用于工业制造。然而,基于ar的新阶段应用与工业应用之间的差距必须得到全面解决。在本研究中,任务技术匹配(TTF)和时间测量方法(MTM)被应用并放在一起创建一个全面的地图,展示制造任务和ar解决方案特征之间的关系。此外,该地图将支持探索基于AR的解决方案的适用性,并确定AR在工业制造中的应用领域,主要集中在质量控制、计量和装配任务上。通过考虑开发人员/用户的观点和该综合地图中制造任务的科学原理,在基于AR的应用程序开发的早期阶段,最终AR解决方案的可用性和有效性也得到了保证。因此,本文提供了一个有用的系统,以标准化的方式将AR功能用于更复杂的多步骤任务。因此,在工业制造环境中,基于ar的质量4.0、虚拟计量和复杂装配解决方案的更多潜在开发和改进可以全面建立和构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Augmented Reality in Industrial Manufacturing - Identification of Application Areas for AR-Based Quality Control/Assembly Based on Technology Suitability
Augmented Reality (AR) has started to be gradually utilized in industrial manufacturing. However, the gap between novel stage and industrial AR-based applications must be comprehensively solved. In this study, the task technology fit (TTF) and method of time measurement (MTM) are applied and put together to create a comprehensive map demonstrating the relationship between manufacturing tasks and AR-solution features. In addition, this map will support exploring the suitability of AR-based solutions and identifying the application areas of AR for industrial manufacturing, primarily focused on quality control, metrology and assembly tasks. By considering both the viewpoint of developers/users and the scientific principles underlying manufacturing tasks in this comprehensive map, the usability and effectiveness of the final AR solution are also ensured at an early stage of AR-based application development.As a result, this paper provides a useful system to utilize AR capabilities for more complex-multistep tasks in a standardized way. Thus, more potential development and improvement of AR-based solutions for quality 4.0, virtual metrology, and complex assemblies in an industrial manufacturing context could be holistically established and built.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
期刊最新文献
Investigation of a Shock Freezing Concept with Additional Electromagnetic Field Exposure Literature Review of Applicable Ballistic Materials for Temporary Wooden Building Envelopes Utilization of Levoglucosan Production By-Products Development of a Performance-Based Specification Model of Combat Clothing for the Procurement Process in Estonia Manufacturing of Bioactive Biodegradable Scaffolds by Stereolithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1