利用 GEMM 和 Systolic 阵列设计和实现基于 NoC 的卷积架构

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2023-09-29 DOI:10.1109/LES.2023.3321019
S. Ortega-Cisneros
{"title":"利用 GEMM 和 Systolic 阵列设计和实现基于 NoC 的卷积架构","authors":"S. Ortega-Cisneros","doi":"10.1109/LES.2023.3321019","DOIUrl":null,"url":null,"abstract":"Neural networks have been used for a long time for image detection and recognition applications due to their ability and efficiency in complex problem solving. Several researchers have chosen to design and develop hardware accelerators for the convolution layer due to the large computational expense consumed by this layer. For that reason, a system that performs indirect GEMM convolution is implemented in a FPGA in this letter. Thus, the input data is segmented and distributed into acceleration modules in a parallel and distributed manner using the Network-on-Chip (NoC) paradigm, and a systolic array (SA) is implemented for the matrix multiplication operation as processing blocks within each NoC Node. Synthesis and performance results show that the implementation of this system presents better results compared to the state of the art in areas, such as acceleration factor, consumption of resources, latency, and operational frequency.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 1","pages":"49-52"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of an NoC-Based Convolution Architecture With GEMM and Systolic Arrays\",\"authors\":\"S. Ortega-Cisneros\",\"doi\":\"10.1109/LES.2023.3321019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks have been used for a long time for image detection and recognition applications due to their ability and efficiency in complex problem solving. Several researchers have chosen to design and develop hardware accelerators for the convolution layer due to the large computational expense consumed by this layer. For that reason, a system that performs indirect GEMM convolution is implemented in a FPGA in this letter. Thus, the input data is segmented and distributed into acceleration modules in a parallel and distributed manner using the Network-on-Chip (NoC) paradigm, and a systolic array (SA) is implemented for the matrix multiplication operation as processing blocks within each NoC Node. Synthesis and performance results show that the implementation of this system presents better results compared to the state of the art in areas, such as acceleration factor, consumption of resources, latency, and operational frequency.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 1\",\"pages\":\"49-52\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10268006/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10268006/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

神经网络因其解决复杂问题的能力和效率,已在图像检测和识别应用中使用了很长时间。由于卷积层需要消耗大量的计算费用,一些研究人员选择为该层设计和开发硬件加速器。因此,本文在 FPGA 中实现了一个执行间接 GEMM 卷积的系统。因此,使用片上网络(NoC)范例,以并行和分布式的方式将输入数据分割并分配到加速模块中,并在每个 NoC 节点内以处理块的形式为矩阵乘法操作实施了一个收缩阵列(SA)。合成和性能结果表明,该系统的实施在加速因子、资源消耗、延迟和运行频率等方面都优于目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Implementation of an NoC-Based Convolution Architecture With GEMM and Systolic Arrays
Neural networks have been used for a long time for image detection and recognition applications due to their ability and efficiency in complex problem solving. Several researchers have chosen to design and develop hardware accelerators for the convolution layer due to the large computational expense consumed by this layer. For that reason, a system that performs indirect GEMM convolution is implemented in a FPGA in this letter. Thus, the input data is segmented and distributed into acceleration modules in a parallel and distributed manner using the Network-on-Chip (NoC) paradigm, and a systolic array (SA) is implemented for the matrix multiplication operation as processing blocks within each NoC Node. Synthesis and performance results show that the implementation of this system presents better results compared to the state of the art in areas, such as acceleration factor, consumption of resources, latency, and operational frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Time-Sensitive Networking in Low Latency Cyber-Physical Systems FedTinyWolf -A Memory Efficient Federated Embedded Learning Mechanism SCALLER: Standard Cell Assembled and Local Layout Effect-Based Ring Oscillators Table of Contents IEEE Embedded Systems Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1