{"title":"利用基于分割的检测网络和轨迹预测进行实时车辆检测","authors":"Nafiseh Zarei, Payman Moallem, Mohammadreza Shams","doi":"10.1049/cvi2.12236","DOIUrl":null,"url":null,"abstract":"<p>The position of vehicles is determined using an algorithm that includes two stages of detection and prediction. The more the number of frames in which the detection network is used, the more accurate the detector is, and the more the prediction network is used, the algorithm is faster. Therefore, the algorithm is very flexible to achieve the required accuracy and speed. YOLO's base detection network is designed to be robust against vehicle scale changes. Also, feature maps are produced in the detector network, which contribute greatly to increasing the accuracy of the detector. In these maps, using differential images and a u-net-based module, image segmentation has been done into two classes: vehicle and background. To increase the accuracy of the recursive predictive network, vehicle manoeuvres are classified. For this purpose, the spatial and temporal information of the vehicles are considered simultaneously. This classifier is much more effective than classifiers that consider spatial and temporal information separately. The Highway and UA-DETRAC datasets demonstrate the performance of the proposed algorithm in urban traffic monitoring systems.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 2","pages":"191-209"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12236","citationCount":"0","resultStr":"{\"title\":\"Real-time vehicle detection using segmentation-based detection network and trajectory prediction\",\"authors\":\"Nafiseh Zarei, Payman Moallem, Mohammadreza Shams\",\"doi\":\"10.1049/cvi2.12236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The position of vehicles is determined using an algorithm that includes two stages of detection and prediction. The more the number of frames in which the detection network is used, the more accurate the detector is, and the more the prediction network is used, the algorithm is faster. Therefore, the algorithm is very flexible to achieve the required accuracy and speed. YOLO's base detection network is designed to be robust against vehicle scale changes. Also, feature maps are produced in the detector network, which contribute greatly to increasing the accuracy of the detector. In these maps, using differential images and a u-net-based module, image segmentation has been done into two classes: vehicle and background. To increase the accuracy of the recursive predictive network, vehicle manoeuvres are classified. For this purpose, the spatial and temporal information of the vehicles are considered simultaneously. This classifier is much more effective than classifiers that consider spatial and temporal information separately. The Highway and UA-DETRAC datasets demonstrate the performance of the proposed algorithm in urban traffic monitoring systems.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 2\",\"pages\":\"191-209\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12236\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12236\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12236","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
确定车辆位置的算法包括检测和预测两个阶段。使用检测网络的帧数越多,检测就越准确,而使用预测网络的帧数越多,算法就越快。因此,该算法非常灵活,可以达到所需的精度和速度。YOLO 的基础检测网络在设计上对车辆尺度变化具有鲁棒性。此外,在检测器网络中还生成了特征图,这对提高检测器的准确性大有裨益。在这些地图中,利用差分图像和基于 U 网的模块,将图像分割为两类:车辆和背景。为了提高递归预测网络的准确性,对车辆的机动性进行了分类。为此,同时考虑了车辆的空间和时间信息。这种分类器比分别考虑空间和时间信息的分类器要有效得多。高速公路和 UA-DETRAC 数据集证明了所提算法在城市交通监控系统中的性能。
Real-time vehicle detection using segmentation-based detection network and trajectory prediction
The position of vehicles is determined using an algorithm that includes two stages of detection and prediction. The more the number of frames in which the detection network is used, the more accurate the detector is, and the more the prediction network is used, the algorithm is faster. Therefore, the algorithm is very flexible to achieve the required accuracy and speed. YOLO's base detection network is designed to be robust against vehicle scale changes. Also, feature maps are produced in the detector network, which contribute greatly to increasing the accuracy of the detector. In these maps, using differential images and a u-net-based module, image segmentation has been done into two classes: vehicle and background. To increase the accuracy of the recursive predictive network, vehicle manoeuvres are classified. For this purpose, the spatial and temporal information of the vehicles are considered simultaneously. This classifier is much more effective than classifiers that consider spatial and temporal information separately. The Highway and UA-DETRAC datasets demonstrate the performance of the proposed algorithm in urban traffic monitoring systems.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf