印度尼西亚加里曼丹中部小农种植园falcataria (L) Nielsen (Sengon)生物量异速生长模型的建立

IF 1.8 Q2 FORESTRY Forest Science and Technology Pub Date : 2023-09-12 DOI:10.1080/21580103.2023.2256355
Md. Sazzad Hossain, Tomiwa V. Oluwajuwon, Afentina N. Ludgen, David P. Hasert, Marisa Sitanggang, Chinedu Offiah
{"title":"印度尼西亚加里曼丹中部小农种植园falcataria (L) Nielsen (Sengon)生物量异速生长模型的建立","authors":"Md. Sazzad Hossain, Tomiwa V. Oluwajuwon, Afentina N. Ludgen, David P. Hasert, Marisa Sitanggang, Chinedu Offiah","doi":"10.1080/21580103.2023.2256355","DOIUrl":null,"url":null,"abstract":"Abstract The forests in Central Kalimantan, Indonesia have been heavily impacted by logging, mining, fires, and other degradation activities for over 30 years. To address this, the Indonesian government has promoted community-based forest management schemes. One such scheme, called Hutan Kemasyarakatan (HKm), has introduced Sengon (Paraserianthes falcataria) in smallholder plantations in Rungan Barat, Gunung Mas, Central Kalimantan. However, accurate estimation of biomass is crucial for carbon sequestration credits, but there are no specific allometric models for estimating Sengon above-ground biomass (AGB) in this area. To create a site-specific AGB allometric model for Sengon, 23 trees were felled to collect fresh biomass data. Various tree variables, such as diameter at breast height: 1.3 m (DBH), total height, merchantable height, and stem bole volume were measured for each sample tree. The average wood basic density of Sengon at the study site was also calculated. A total of nine alternative candidate regression equations were fitted and tested to select the best-fit AGB allometric model. Also, to assess the adaptedness of the identified AGB allometric model, comparisons with the models from literature, and comparisons between two interchangeable methodologies (i.e. direct biomass allometric model and biomass expansion factor (BEF)-based biomass estimation) were undertaken. This study has developed a regression function, denoted as to estimate the AGB of Sengon trees in smallholder plantations in Central Kalimantan, Indonesia. The formulated regression function demonstrated better estimation performance compared to common pantropical and regional AGB allometric models. In terms of the BEF-biomass approach, the AGB estimation derived from Smalian’s volume was relatively accurate, close to the mean AGB obtained by the formulated model in this study. In summary, this study proposes using the developed model, based solely on DBH, to accurately estimate AGB and carbon sequestration potential in Sengon trees. The accurate estimation of AGB using this model has additional advantages, including facilitating carbon credit acquisition and informing long-term management decisions.","PeriodicalId":51802,"journal":{"name":"Forest Science and Technology","volume":"32 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulating biomass allometric model for <i>Paraserianthes falcataria</i> (L) Nielsen (Sengon) in smallholder plantations, Central Kalimantan, Indonesia\",\"authors\":\"Md. Sazzad Hossain, Tomiwa V. Oluwajuwon, Afentina N. Ludgen, David P. Hasert, Marisa Sitanggang, Chinedu Offiah\",\"doi\":\"10.1080/21580103.2023.2256355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The forests in Central Kalimantan, Indonesia have been heavily impacted by logging, mining, fires, and other degradation activities for over 30 years. To address this, the Indonesian government has promoted community-based forest management schemes. One such scheme, called Hutan Kemasyarakatan (HKm), has introduced Sengon (Paraserianthes falcataria) in smallholder plantations in Rungan Barat, Gunung Mas, Central Kalimantan. However, accurate estimation of biomass is crucial for carbon sequestration credits, but there are no specific allometric models for estimating Sengon above-ground biomass (AGB) in this area. To create a site-specific AGB allometric model for Sengon, 23 trees were felled to collect fresh biomass data. Various tree variables, such as diameter at breast height: 1.3 m (DBH), total height, merchantable height, and stem bole volume were measured for each sample tree. The average wood basic density of Sengon at the study site was also calculated. A total of nine alternative candidate regression equations were fitted and tested to select the best-fit AGB allometric model. Also, to assess the adaptedness of the identified AGB allometric model, comparisons with the models from literature, and comparisons between two interchangeable methodologies (i.e. direct biomass allometric model and biomass expansion factor (BEF)-based biomass estimation) were undertaken. This study has developed a regression function, denoted as to estimate the AGB of Sengon trees in smallholder plantations in Central Kalimantan, Indonesia. The formulated regression function demonstrated better estimation performance compared to common pantropical and regional AGB allometric models. In terms of the BEF-biomass approach, the AGB estimation derived from Smalian’s volume was relatively accurate, close to the mean AGB obtained by the formulated model in this study. In summary, this study proposes using the developed model, based solely on DBH, to accurately estimate AGB and carbon sequestration potential in Sengon trees. The accurate estimation of AGB using this model has additional advantages, including facilitating carbon credit acquisition and informing long-term management decisions.\",\"PeriodicalId\":51802,\"journal\":{\"name\":\"Forest Science and Technology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21580103.2023.2256355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21580103.2023.2256355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formulating biomass allometric model for Paraserianthes falcataria (L) Nielsen (Sengon) in smallholder plantations, Central Kalimantan, Indonesia
Abstract The forests in Central Kalimantan, Indonesia have been heavily impacted by logging, mining, fires, and other degradation activities for over 30 years. To address this, the Indonesian government has promoted community-based forest management schemes. One such scheme, called Hutan Kemasyarakatan (HKm), has introduced Sengon (Paraserianthes falcataria) in smallholder plantations in Rungan Barat, Gunung Mas, Central Kalimantan. However, accurate estimation of biomass is crucial for carbon sequestration credits, but there are no specific allometric models for estimating Sengon above-ground biomass (AGB) in this area. To create a site-specific AGB allometric model for Sengon, 23 trees were felled to collect fresh biomass data. Various tree variables, such as diameter at breast height: 1.3 m (DBH), total height, merchantable height, and stem bole volume were measured for each sample tree. The average wood basic density of Sengon at the study site was also calculated. A total of nine alternative candidate regression equations were fitted and tested to select the best-fit AGB allometric model. Also, to assess the adaptedness of the identified AGB allometric model, comparisons with the models from literature, and comparisons between two interchangeable methodologies (i.e. direct biomass allometric model and biomass expansion factor (BEF)-based biomass estimation) were undertaken. This study has developed a regression function, denoted as to estimate the AGB of Sengon trees in smallholder plantations in Central Kalimantan, Indonesia. The formulated regression function demonstrated better estimation performance compared to common pantropical and regional AGB allometric models. In terms of the BEF-biomass approach, the AGB estimation derived from Smalian’s volume was relatively accurate, close to the mean AGB obtained by the formulated model in this study. In summary, this study proposes using the developed model, based solely on DBH, to accurately estimate AGB and carbon sequestration potential in Sengon trees. The accurate estimation of AGB using this model has additional advantages, including facilitating carbon credit acquisition and informing long-term management decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
0
审稿时长
21 weeks
期刊最新文献
Agroforestry practices for climate change adaptation and livelihood resilience in drylands of Ethiopia Variation of Ba concentration in some plants grown in industrial zone in Türkiye Population, morphological, and genetic characteristics of pelawan trees on Bangka Island, Indonesia: implications for conservation Genetic gain in oil productivity from breeding program of Cajuput ( Melaleuca cajuputi subsp. cajuputi ) in Indonesia Smart agroforestry for sustaining soil fertility and community livelihood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1