在湿热和热条件下,对不同粘结单搭接接头在弯曲载荷下的静态和疲劳性能进行了实验研究

IF 2.9 4区 材料科学 Q2 ENGINEERING, CHEMICAL Journal of Adhesion Pub Date : 2023-10-18 DOI:10.1080/00218464.2023.2270431
Li-Cai Zhao, Sajjad Karimi, Liang Xu
{"title":"在湿热和热条件下,对不同粘结单搭接接头在弯曲载荷下的静态和疲劳性能进行了实验研究","authors":"Li-Cai Zhao, Sajjad Karimi, Liang Xu","doi":"10.1080/00218464.2023.2270431","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe objective of this study is to investigate the impact of hygrothermal and thermal aging on adhesive bonding joints of similar and dissimilar specimens. The research focuses on the single lap joint (SLJ) configuration using Aluminum/Aluminum and CFRP/CFRP for similar bonding and Aluminum/CFRP for dissimilar bonding. Understanding the behavior of such joints over time and eventual failure can enhance their durability, reliability, and safety in structures. The study submerged SLJ specimens in tap water at a temperature of 53°C for 20 days to assess hygrothermal aging and kept another group of joints in an oven set at the same temperature for thermal aging. The research evaluated the strength of samples that underwent no aging, hygrothermal and thermal aging, tested through three-point bending tests. Various load levels were tested utilizing a recently designed fixture, including 70%, 60%, and 50% of the static load level. Results showed the highest joint strength in Aluminum/Aluminum SLJs and reduced strength following thermal and hygrothermal aging. The failure patterns and number of cycles leading to failure also varied with load percent and aging. Ultimately, the study aimed to evaluate and contrast the strength of samples that underwent different aging processes.KEYWORDS: Jointstatic and fatigue strengthhygrothermal and thermal conditionsbending load AcknowledgementThis research has been jointly supported by The China's Liaoning Province 'Xing Liao Talents Plan' Youth Top-notch Talent Funding Project under Grant No.XLYC2007146 and Science and Technology Research Plan of China Railway 19th Bureau Co.,Ltd under Grant No.2021-B03.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingChina’s Liaoning Province “Xing Liao Talents Plan” Youth Top-notch Talent Funding Project (No.XLYC2007146).","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental investigation of static and fatigue behavior of various adhesive single lap joints under bending loads subjected to hygrothermal and thermal conditions\",\"authors\":\"Li-Cai Zhao, Sajjad Karimi, Liang Xu\",\"doi\":\"10.1080/00218464.2023.2270431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe objective of this study is to investigate the impact of hygrothermal and thermal aging on adhesive bonding joints of similar and dissimilar specimens. The research focuses on the single lap joint (SLJ) configuration using Aluminum/Aluminum and CFRP/CFRP for similar bonding and Aluminum/CFRP for dissimilar bonding. Understanding the behavior of such joints over time and eventual failure can enhance their durability, reliability, and safety in structures. The study submerged SLJ specimens in tap water at a temperature of 53°C for 20 days to assess hygrothermal aging and kept another group of joints in an oven set at the same temperature for thermal aging. The research evaluated the strength of samples that underwent no aging, hygrothermal and thermal aging, tested through three-point bending tests. Various load levels were tested utilizing a recently designed fixture, including 70%, 60%, and 50% of the static load level. Results showed the highest joint strength in Aluminum/Aluminum SLJs and reduced strength following thermal and hygrothermal aging. The failure patterns and number of cycles leading to failure also varied with load percent and aging. Ultimately, the study aimed to evaluate and contrast the strength of samples that underwent different aging processes.KEYWORDS: Jointstatic and fatigue strengthhygrothermal and thermal conditionsbending load AcknowledgementThis research has been jointly supported by The China's Liaoning Province 'Xing Liao Talents Plan' Youth Top-notch Talent Funding Project under Grant No.XLYC2007146 and Science and Technology Research Plan of China Railway 19th Bureau Co.,Ltd under Grant No.2021-B03.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingChina’s Liaoning Province “Xing Liao Talents Plan” Youth Top-notch Talent Funding Project (No.XLYC2007146).\",\"PeriodicalId\":14778,\"journal\":{\"name\":\"Journal of Adhesion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Adhesion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00218464.2023.2270431\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00218464.2023.2270431","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究的目的是研究湿热老化和热老化对相似和不同试样粘接接头的影响。重点研究了铝/铝、CFRP/CFRP相似键合、铝/CFRP不同键合的单搭接结构。了解这些节点随着时间的推移和最终失效的行为可以提高它们在结构中的耐久性、可靠性和安全性。研究将SLJ试件置于53℃的自来水中浸泡20天,进行湿热老化试验,并将另一组接头置于相同温度的烤箱中进行热老化试验。该研究评估了未老化、湿热老化和热老化样品的强度,并通过三点弯曲试验进行了测试。使用最近设计的夹具测试了各种负载水平,包括70%,60%和50%的静态负载水平。结果表明:铝/铝slj接头强度最高,热、湿热时效后接头强度降低;失效模式和导致失效的循环次数也随载荷百分比和老化而变化。最终,该研究旨在评估和对比经历不同老化过程的样品的强度。关键词:关节静力与疲劳强度湿热与热条件弯曲载荷。中铁十九局有限公司科技研究计划(批准号2021- b03)。披露声明作者未报告潜在的利益冲突。中国辽宁省“兴辽英才计划”青年拔尖人才资助项目(No.XLYC2007146)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An experimental investigation of static and fatigue behavior of various adhesive single lap joints under bending loads subjected to hygrothermal and thermal conditions
ABSTRACTThe objective of this study is to investigate the impact of hygrothermal and thermal aging on adhesive bonding joints of similar and dissimilar specimens. The research focuses on the single lap joint (SLJ) configuration using Aluminum/Aluminum and CFRP/CFRP for similar bonding and Aluminum/CFRP for dissimilar bonding. Understanding the behavior of such joints over time and eventual failure can enhance their durability, reliability, and safety in structures. The study submerged SLJ specimens in tap water at a temperature of 53°C for 20 days to assess hygrothermal aging and kept another group of joints in an oven set at the same temperature for thermal aging. The research evaluated the strength of samples that underwent no aging, hygrothermal and thermal aging, tested through three-point bending tests. Various load levels were tested utilizing a recently designed fixture, including 70%, 60%, and 50% of the static load level. Results showed the highest joint strength in Aluminum/Aluminum SLJs and reduced strength following thermal and hygrothermal aging. The failure patterns and number of cycles leading to failure also varied with load percent and aging. Ultimately, the study aimed to evaluate and contrast the strength of samples that underwent different aging processes.KEYWORDS: Jointstatic and fatigue strengthhygrothermal and thermal conditionsbending load AcknowledgementThis research has been jointly supported by The China's Liaoning Province 'Xing Liao Talents Plan' Youth Top-notch Talent Funding Project under Grant No.XLYC2007146 and Science and Technology Research Plan of China Railway 19th Bureau Co.,Ltd under Grant No.2021-B03.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingChina’s Liaoning Province “Xing Liao Talents Plan” Youth Top-notch Talent Funding Project (No.XLYC2007146).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Adhesion
Journal of Adhesion 工程技术-材料科学:综合
CiteScore
5.30
自引率
9.10%
发文量
55
审稿时长
1 months
期刊介绍: The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.
期刊最新文献
Heated press welding: analysis of the parameters influencing the mechanical strength of hybrid PA66/PA12 thermoplastic and S235 steel sheet joints Effect of exposure to UV-C rays on fire retardancy and adherence of curable polymer resins for application in disinfection chambers Adhesion property of municipal solid waste incinerator bottom ash and limestone with asphalt based on surface energy theory Experimental investigation and molecular simulation on the chemical bonding between laser-treated titanium alloy amorphous surface and epoxy adhesive Preparation of isocyanate microcapsules by complex coacervation and its application in plywood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1