Daniel Rosenfeld, Alexander Kokhanovsky, Tom Goren, Edward Gryspeerdt, Otto Hasekamp, Hailing Jia, Anton Lopatin, Johannes Quaas, Zengxin Pan, Odran Sourdeval
{"title":"基于云介导的气溶胶强迫卫星估计的前沿","authors":"Daniel Rosenfeld, Alexander Kokhanovsky, Tom Goren, Edward Gryspeerdt, Otto Hasekamp, Hailing Jia, Anton Lopatin, Johannes Quaas, Zengxin Pan, Odran Sourdeval","doi":"10.1029/2022RG000799","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric aerosols affect the Earth's climate in many ways, including acting as the seeds on which cloud droplets form. Since a large fraction of these particles is anthropogenic, the clouds' microphysical and radiative characteristics are influenced by human activity on a global scale leading to important climatic effects. The respective change in the energy budget at the top of the atmosphere is defined as the effective radiative forcing due to aerosol-cloud interaction (ERF<sub>aci</sub>). It is estimated that the ERF<sub>aci</sub> offsets presently nearly 1/4 of the greenhouse-induced warming, but the uncertainty is within a factor of two. A common method to calculate the ERF<sub>aci</sub> is by the multiplication of the susceptibility of the cloud radiative effect to changes in aerosols by the anthropogenic change of the aerosol concentration. This has to be done by integrating it over all cloud regimes. Here we review the various methods of the ERF<sub>aci</sub> estimation. Global measurements require satellites' global coverage. The challenge of quantifying aerosol amounts in cloudy atmospheres are met with the rapid development of novel methodologies reviewed here. The aerosol characteristics can be retrieved from space based on their optical properties, including polarization. The concentrations of the aerosols that serve as cloud drop condensation nuclei can be also estimated from their impact on the satellite-retrieved cloud drop number concentrations. These observations are critical for reducing the uncertainty in the ERF<sub>aci</sub> calculated from global climate models (GCMs), but further development is required to allow GCMs to properly simulate and benefit these novel observables.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frontiers in Satellite-Based Estimates of Cloud-Mediated Aerosol Forcing\",\"authors\":\"Daniel Rosenfeld, Alexander Kokhanovsky, Tom Goren, Edward Gryspeerdt, Otto Hasekamp, Hailing Jia, Anton Lopatin, Johannes Quaas, Zengxin Pan, Odran Sourdeval\",\"doi\":\"10.1029/2022RG000799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric aerosols affect the Earth's climate in many ways, including acting as the seeds on which cloud droplets form. Since a large fraction of these particles is anthropogenic, the clouds' microphysical and radiative characteristics are influenced by human activity on a global scale leading to important climatic effects. The respective change in the energy budget at the top of the atmosphere is defined as the effective radiative forcing due to aerosol-cloud interaction (ERF<sub>aci</sub>). It is estimated that the ERF<sub>aci</sub> offsets presently nearly 1/4 of the greenhouse-induced warming, but the uncertainty is within a factor of two. A common method to calculate the ERF<sub>aci</sub> is by the multiplication of the susceptibility of the cloud radiative effect to changes in aerosols by the anthropogenic change of the aerosol concentration. This has to be done by integrating it over all cloud regimes. Here we review the various methods of the ERF<sub>aci</sub> estimation. Global measurements require satellites' global coverage. The challenge of quantifying aerosol amounts in cloudy atmospheres are met with the rapid development of novel methodologies reviewed here. The aerosol characteristics can be retrieved from space based on their optical properties, including polarization. The concentrations of the aerosols that serve as cloud drop condensation nuclei can be also estimated from their impact on the satellite-retrieved cloud drop number concentrations. These observations are critical for reducing the uncertainty in the ERF<sub>aci</sub> calculated from global climate models (GCMs), but further development is required to allow GCMs to properly simulate and benefit these novel observables.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2022RG000799\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022RG000799","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Frontiers in Satellite-Based Estimates of Cloud-Mediated Aerosol Forcing
Atmospheric aerosols affect the Earth's climate in many ways, including acting as the seeds on which cloud droplets form. Since a large fraction of these particles is anthropogenic, the clouds' microphysical and radiative characteristics are influenced by human activity on a global scale leading to important climatic effects. The respective change in the energy budget at the top of the atmosphere is defined as the effective radiative forcing due to aerosol-cloud interaction (ERFaci). It is estimated that the ERFaci offsets presently nearly 1/4 of the greenhouse-induced warming, but the uncertainty is within a factor of two. A common method to calculate the ERFaci is by the multiplication of the susceptibility of the cloud radiative effect to changes in aerosols by the anthropogenic change of the aerosol concentration. This has to be done by integrating it over all cloud regimes. Here we review the various methods of the ERFaci estimation. Global measurements require satellites' global coverage. The challenge of quantifying aerosol amounts in cloudy atmospheres are met with the rapid development of novel methodologies reviewed here. The aerosol characteristics can be retrieved from space based on their optical properties, including polarization. The concentrations of the aerosols that serve as cloud drop condensation nuclei can be also estimated from their impact on the satellite-retrieved cloud drop number concentrations. These observations are critical for reducing the uncertainty in the ERFaci calculated from global climate models (GCMs), but further development is required to allow GCMs to properly simulate and benefit these novel observables.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.