Frazna Parasuti, Dyah Hikmawati, Herri Trilaksana, Moh. Yasin
{"title":"氨液位传感器采用锥形光纤涂层与二氧化钛结合卟啉","authors":"Frazna Parasuti, Dyah Hikmawati, Herri Trilaksana, Moh. Yasin","doi":"10.37190/oa230302","DOIUrl":null,"url":null,"abstract":"Since ammonia is water-soluble, environmental studies have shown that the industrial waste such as fertilizer manufacturing, food products, palm oil, urea fertilizer industry can cause very serious damage to water body ecosystems if not properly managed, resulting in a decrease in water quality. Devices based on optical technology, especially devices that combine optical fibers and nanomaterials, are identified as highly sensitive to the species of interest by detecting changes in physicochemical properties. A practical, easy-to-use, inexpensive instrument for detecting ammonia level was proposed using tapered optical fiber (TOF) coated with titanium dioxide-incorporated porphyrin. TOF was fabricated by simultaneously stretching and heating. The preparation of TiO 2 /porphyrin/gelatine was prepared to coat tapered optical fiber by dipping. SEM analysis shows an increase in length and a decrease in diameter, also the successful coating of titanium dioxide and porphyrin in the taper region. The EDX analysis also proves the presence of the Ti element in the TOF layer. The TOF produces significant sensing performances toward the ammonia liquid concentration level. The TOF coated with titanium dioxide-incorporated porphyrin can detect a one ppm difference in ammonia concentration with a certain range of output voltage for every concentration has.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonia level sensor using tapered optical fiber coated with titanium dioxide-incorporated porphyrin\",\"authors\":\"Frazna Parasuti, Dyah Hikmawati, Herri Trilaksana, Moh. Yasin\",\"doi\":\"10.37190/oa230302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since ammonia is water-soluble, environmental studies have shown that the industrial waste such as fertilizer manufacturing, food products, palm oil, urea fertilizer industry can cause very serious damage to water body ecosystems if not properly managed, resulting in a decrease in water quality. Devices based on optical technology, especially devices that combine optical fibers and nanomaterials, are identified as highly sensitive to the species of interest by detecting changes in physicochemical properties. A practical, easy-to-use, inexpensive instrument for detecting ammonia level was proposed using tapered optical fiber (TOF) coated with titanium dioxide-incorporated porphyrin. TOF was fabricated by simultaneously stretching and heating. The preparation of TiO 2 /porphyrin/gelatine was prepared to coat tapered optical fiber by dipping. SEM analysis shows an increase in length and a decrease in diameter, also the successful coating of titanium dioxide and porphyrin in the taper region. The EDX analysis also proves the presence of the Ti element in the TOF layer. The TOF produces significant sensing performances toward the ammonia liquid concentration level. The TOF coated with titanium dioxide-incorporated porphyrin can detect a one ppm difference in ammonia concentration with a certain range of output voltage for every concentration has.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/oa230302\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/oa230302","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Ammonia level sensor using tapered optical fiber coated with titanium dioxide-incorporated porphyrin
Since ammonia is water-soluble, environmental studies have shown that the industrial waste such as fertilizer manufacturing, food products, palm oil, urea fertilizer industry can cause very serious damage to water body ecosystems if not properly managed, resulting in a decrease in water quality. Devices based on optical technology, especially devices that combine optical fibers and nanomaterials, are identified as highly sensitive to the species of interest by detecting changes in physicochemical properties. A practical, easy-to-use, inexpensive instrument for detecting ammonia level was proposed using tapered optical fiber (TOF) coated with titanium dioxide-incorporated porphyrin. TOF was fabricated by simultaneously stretching and heating. The preparation of TiO 2 /porphyrin/gelatine was prepared to coat tapered optical fiber by dipping. SEM analysis shows an increase in length and a decrease in diameter, also the successful coating of titanium dioxide and porphyrin in the taper region. The EDX analysis also proves the presence of the Ti element in the TOF layer. The TOF produces significant sensing performances toward the ammonia liquid concentration level. The TOF coated with titanium dioxide-incorporated porphyrin can detect a one ppm difference in ammonia concentration with a certain range of output voltage for every concentration has.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.