技术说明:NASAaccess——一个获取、重新格式化和可视化遥感地球观测和气候数据的工具

IF 5.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Hydrology and Earth System Sciences Pub Date : 2023-10-13 DOI:10.5194/hess-27-3621-2023
Ibrahim Nourein Mohammed, Elkin Giovanni Romero Bustamante, John Dennis Bolten, Everett James Nelson
{"title":"技术说明:NASAaccess——一个获取、重新格式化和可视化遥感地球观测和气候数据的工具","authors":"Ibrahim Nourein Mohammed, Elkin Giovanni Romero Bustamante, John Dennis Bolten, Everett James Nelson","doi":"10.5194/hess-27-3621-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The National Aeronautics and Space Administration (NASA) has launched a new initiative, the Open-Source Science Initiative (OSSI), to enable and support science towards openness. The OSSI supports open-source software development and dissemination. In this work, we present NASAaccess, which is an open-source software package and web-based environmental modeling application for earth observation data accessing, reformatting, and presenting quantitative data products. The main objective of developing the NASAaccess platform is to facilitate exploration, modeling, and understanding of earth data for scientists, stakeholders, and concerned citizens whose objectives align with the new OSSI goals. The NASAaccess platform is available as software packages (i.e., the R and conda packages) as well as an interactive-format web-based environmental modeling application for earth observation data developed with Tethys Platform. NASAaccess has been envisioned as lowering the technical barriers and simplifying the process of accessing scalable distributed computing resources and leveraging additional software for data and computationally intensive modeling frameworks. Specifically, NASAaccess has been developed to meet the need for seamless earth observation remote-sensing and climate data ingestion into various hydrological modeling frameworks. Moreover, NASAaccess is also contributing to keeping interested parties and stakeholders engaged with environmental modeling, accessing the information available in various remote-sensing products. NASAaccess' current capabilities cover various NASA datasets and products that include the Global Precipitation Measurement (GPM) data products, the Global Land Data Assimilation System (GLDAS) land surface states and fluxes, and the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) Coupled Model Intercomparison Project Phase 5 (CMIP5) and Coupled Model Intercomparison Project Phase 6 (CMIP6) climate change dataset products.","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"77 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical note: NASAaccess – a tool for access, reformatting, and visualization of remotely sensed earth observation and climate data\",\"authors\":\"Ibrahim Nourein Mohammed, Elkin Giovanni Romero Bustamante, John Dennis Bolten, Everett James Nelson\",\"doi\":\"10.5194/hess-27-3621-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The National Aeronautics and Space Administration (NASA) has launched a new initiative, the Open-Source Science Initiative (OSSI), to enable and support science towards openness. The OSSI supports open-source software development and dissemination. In this work, we present NASAaccess, which is an open-source software package and web-based environmental modeling application for earth observation data accessing, reformatting, and presenting quantitative data products. The main objective of developing the NASAaccess platform is to facilitate exploration, modeling, and understanding of earth data for scientists, stakeholders, and concerned citizens whose objectives align with the new OSSI goals. The NASAaccess platform is available as software packages (i.e., the R and conda packages) as well as an interactive-format web-based environmental modeling application for earth observation data developed with Tethys Platform. NASAaccess has been envisioned as lowering the technical barriers and simplifying the process of accessing scalable distributed computing resources and leveraging additional software for data and computationally intensive modeling frameworks. Specifically, NASAaccess has been developed to meet the need for seamless earth observation remote-sensing and climate data ingestion into various hydrological modeling frameworks. Moreover, NASAaccess is also contributing to keeping interested parties and stakeholders engaged with environmental modeling, accessing the information available in various remote-sensing products. NASAaccess' current capabilities cover various NASA datasets and products that include the Global Precipitation Measurement (GPM) data products, the Global Land Data Assimilation System (GLDAS) land surface states and fluxes, and the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) Coupled Model Intercomparison Project Phase 5 (CMIP5) and Coupled Model Intercomparison Project Phase 6 (CMIP6) climate change dataset products.\",\"PeriodicalId\":13143,\"journal\":{\"name\":\"Hydrology and Earth System Sciences\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology and Earth System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/hess-27-3621-2023\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/hess-27-3621-2023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要美国国家航空航天局(NASA)发起了一项新的倡议,即开源科学倡议(OSSI),以使和支持科学走向开放。OSSI支持开源软件的开发和传播。在这项工作中,我们提出了NASAaccess,这是一个开源软件包和基于web的环境建模应用程序,用于对地观测数据的访问,重新格式化和呈现定量数据产品。开发nasa访问平台的主要目标是促进科学家、利益相关者和相关公民对地球数据的探索、建模和理解,他们的目标与新的OSSI目标一致。NASAaccess平台可作为软件包(即R和conda软件包)以及与Tethys平台一起开发的基于web的交互式环境建模应用程序,用于地球观测数据。NASAaccess被设想为降低技术壁垒,简化访问可扩展的分布式计算资源的过程,并为数据和计算密集型建模框架利用额外的软件。具体来说,NASAaccess的开发是为了满足将地球观测、遥感和气候数据无缝摄取到各种水文建模框架中的需求。此外,NASAaccess还有助于使有关各方和利益攸关方参与环境建模,获取各种遥感产品中提供的信息。NASAaccess目前的能力涵盖各种NASA数据集和产品,包括全球降水测量(GPM)数据产品、全球陆地数据同化系统(GLDAS)陆地表面状态和通量,以及NASA地球交换全球每日缩小预估(NEX-GDDP)耦合模式比对项目第5阶段(CMIP5)和耦合模式比对项目第6阶段(CMIP6)气候变化数据集产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technical note: NASAaccess – a tool for access, reformatting, and visualization of remotely sensed earth observation and climate data
Abstract. The National Aeronautics and Space Administration (NASA) has launched a new initiative, the Open-Source Science Initiative (OSSI), to enable and support science towards openness. The OSSI supports open-source software development and dissemination. In this work, we present NASAaccess, which is an open-source software package and web-based environmental modeling application for earth observation data accessing, reformatting, and presenting quantitative data products. The main objective of developing the NASAaccess platform is to facilitate exploration, modeling, and understanding of earth data for scientists, stakeholders, and concerned citizens whose objectives align with the new OSSI goals. The NASAaccess platform is available as software packages (i.e., the R and conda packages) as well as an interactive-format web-based environmental modeling application for earth observation data developed with Tethys Platform. NASAaccess has been envisioned as lowering the technical barriers and simplifying the process of accessing scalable distributed computing resources and leveraging additional software for data and computationally intensive modeling frameworks. Specifically, NASAaccess has been developed to meet the need for seamless earth observation remote-sensing and climate data ingestion into various hydrological modeling frameworks. Moreover, NASAaccess is also contributing to keeping interested parties and stakeholders engaged with environmental modeling, accessing the information available in various remote-sensing products. NASAaccess' current capabilities cover various NASA datasets and products that include the Global Precipitation Measurement (GPM) data products, the Global Land Data Assimilation System (GLDAS) land surface states and fluxes, and the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) Coupled Model Intercomparison Project Phase 5 (CMIP5) and Coupled Model Intercomparison Project Phase 6 (CMIP6) climate change dataset products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology and Earth System Sciences
Hydrology and Earth System Sciences 地学-地球科学综合
CiteScore
10.10
自引率
7.90%
发文量
273
审稿时长
15 months
期刊介绍: Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.
期刊最新文献
Exploring the joint probability of precipitation and soil moisture over Europe using copulas Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+ Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1