新型样品制备技术对砷形态形成的影响

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Turkish Journal of Chemistry Pub Date : 2023-10-31 DOI:10.55730/1300-0527.3590
MUHAMMAD SAQAF JAGIRANI, MUSTAFA SOYLAK
{"title":"新型样品制备技术对砷形态形成的影响","authors":"MUHAMMAD SAQAF JAGIRANI, MUSTAFA SOYLAK","doi":"10.55730/1300-0527.3590","DOIUrl":null,"url":null,"abstract":"Arsenic is a hazardous element that causes environmental pollution. Due to its toxicological effects, it is crucial to quantify and minimize the hazardous impact on the ecology. Despite the significant advances in analytical techniques, sample preparation is still crucial for determining target analytes in complex matrices. Several factors affect the direct analysis, such as trace-level analysis, advanced regulatory requirements, complexity of sample matrices, and incompatible with analytical instrumentation. Along with the development in the sample preparation process, microextraction methods play an essential role in the sample preparation process. Microextraction techniques (METs) are the newest green approach that replaces traditional sample preparation and preconcentration methods. METs have minimized the limitation of conventional sample preparation methods while keeping all their benefits. METs improve extraction efficacy, are fast, automated, use less amount of solvents, and are suitable for the environment. Microextraction techniques with less solvent consumption, such as solid phase microextraction (SPME) solvent-free methods, and liquid phase microextraction (LPME), are widely used in modern analytical procedures. SPME development focuses on synthesizing new sorbents and applying online sample preparation, whereas LPME research investigates the utilization of new solvents.","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsenic speciation by using emerging sample preparation techniques: a review\",\"authors\":\"MUHAMMAD SAQAF JAGIRANI, MUSTAFA SOYLAK\",\"doi\":\"10.55730/1300-0527.3590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arsenic is a hazardous element that causes environmental pollution. Due to its toxicological effects, it is crucial to quantify and minimize the hazardous impact on the ecology. Despite the significant advances in analytical techniques, sample preparation is still crucial for determining target analytes in complex matrices. Several factors affect the direct analysis, such as trace-level analysis, advanced regulatory requirements, complexity of sample matrices, and incompatible with analytical instrumentation. Along with the development in the sample preparation process, microextraction methods play an essential role in the sample preparation process. Microextraction techniques (METs) are the newest green approach that replaces traditional sample preparation and preconcentration methods. METs have minimized the limitation of conventional sample preparation methods while keeping all their benefits. METs improve extraction efficacy, are fast, automated, use less amount of solvents, and are suitable for the environment. Microextraction techniques with less solvent consumption, such as solid phase microextraction (SPME) solvent-free methods, and liquid phase microextraction (LPME), are widely used in modern analytical procedures. SPME development focuses on synthesizing new sorbents and applying online sample preparation, whereas LPME research investigates the utilization of new solvents.\",\"PeriodicalId\":23367,\"journal\":{\"name\":\"Turkish Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3590\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0527.3590","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

砷是一种造成环境污染的有害元素。由于其毒理学效应,量化和最小化其对生态的有害影响至关重要。尽管分析技术取得了重大进展,但样品制备对于确定复杂基质中的目标分析物仍然至关重要。有几个因素影响直接分析,如痕量水平分析,先进的法规要求,样品矩阵的复杂性,以及与分析仪器的不兼容。随着样品制备工艺的发展,微萃取方法在样品制备过程中发挥着重要的作用。微萃取技术(METs)是取代传统样品制备和预浓缩方法的最新绿色方法。METs最大限度地减少了传统样品制备方法的局限性,同时保留了它们的所有优点。METs提高了萃取效率,快速,自动化,使用较少的溶剂,并且适合环境。固相微萃取(SPME)无溶剂法和液相微萃取(LPME)等溶剂消耗较少的微萃取技术在现代分析过程中得到广泛应用。SPME的发展重点是合成新的吸附剂和应用在线样品制备,而LPME的研究则是研究新溶剂的利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arsenic speciation by using emerging sample preparation techniques: a review
Arsenic is a hazardous element that causes environmental pollution. Due to its toxicological effects, it is crucial to quantify and minimize the hazardous impact on the ecology. Despite the significant advances in analytical techniques, sample preparation is still crucial for determining target analytes in complex matrices. Several factors affect the direct analysis, such as trace-level analysis, advanced regulatory requirements, complexity of sample matrices, and incompatible with analytical instrumentation. Along with the development in the sample preparation process, microextraction methods play an essential role in the sample preparation process. Microextraction techniques (METs) are the newest green approach that replaces traditional sample preparation and preconcentration methods. METs have minimized the limitation of conventional sample preparation methods while keeping all their benefits. METs improve extraction efficacy, are fast, automated, use less amount of solvents, and are suitable for the environment. Microextraction techniques with less solvent consumption, such as solid phase microextraction (SPME) solvent-free methods, and liquid phase microextraction (LPME), are widely used in modern analytical procedures. SPME development focuses on synthesizing new sorbents and applying online sample preparation, whereas LPME research investigates the utilization of new solvents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
期刊最新文献
Corrigendum to "Polybrominated methoxy- and hydroxynaphthalenes" [Turkish Journal of Chemistry 40 (2) 2016 332-346 ]. Synthesis and characterization of new hexahydroquinoline derivatives and evaluation of their cytotoxicity, intracellular ROS production, and inhibitory effects on inflammatory mediators. Identification of blood at simulated crime scenes using silver nanoparticles with SERS. Magnetic solid-phase extraction technique based on Fe3O4@coPPy-PTH nanocomposite for extraction of cobalt, chromium, and nickel prior to determination by microsample injection system-flame atomic absorption spectrometry in alcoholic and nonalcoholic beverages. Synthesis of 3-methyl-3-buten-1-ol by supercritical CO2 in coordination with HZSM-5-catalyzed formaldehyde-isobutene Prins reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1