{"title":"对参数设计任务中设计策略的识别及其对性能结果的影响","authors":"Alkim Avsar, Paul Grogan","doi":"10.1115/1.4063972","DOIUrl":null,"url":null,"abstract":"Abstract Understanding design processes and behaviors is important for building more effective design outcomes. During design tasks, teams exhibit sequences of actions that form strategies. This paper investigates patterns of design actions in a paired parameter design experiment to discover design strategies that influence outcomes. The analysis uses secondary data from a design experiment in which each pair completes a series of simplified cooperative parameter design tasks to minimize completion time. Analysis of 192 task observations uses exploratory factor analysis to identify design strategies and regression analysis to evaluate their impacts on performance outcomes. The paper finds large actions and high action size variability significantly increase completion times, leading to poor performance outcomes. Whereas results show that frequently changing input controllers within and among designers significantly reduces completion times, leading to higher performance outcomes. Discussion states that larger actions can introduce unexpected errors, while smaller and consistent actions enhance designers' understanding of the effects of each action, aiding in better planning for subsequent steps. Frequent controller switching reflects effective communication and understanding within design teams, which is crucial for cooperative tasks.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"14 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Design Strategies and Their Effects on Performance Outcomes in Pair Parameter Design Tasks\",\"authors\":\"Alkim Avsar, Paul Grogan\",\"doi\":\"10.1115/1.4063972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Understanding design processes and behaviors is important for building more effective design outcomes. During design tasks, teams exhibit sequences of actions that form strategies. This paper investigates patterns of design actions in a paired parameter design experiment to discover design strategies that influence outcomes. The analysis uses secondary data from a design experiment in which each pair completes a series of simplified cooperative parameter design tasks to minimize completion time. Analysis of 192 task observations uses exploratory factor analysis to identify design strategies and regression analysis to evaluate their impacts on performance outcomes. The paper finds large actions and high action size variability significantly increase completion times, leading to poor performance outcomes. Whereas results show that frequently changing input controllers within and among designers significantly reduces completion times, leading to higher performance outcomes. Discussion states that larger actions can introduce unexpected errors, while smaller and consistent actions enhance designers' understanding of the effects of each action, aiding in better planning for subsequent steps. Frequent controller switching reflects effective communication and understanding within design teams, which is crucial for cooperative tasks.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063972\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063972","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Identification of Design Strategies and Their Effects on Performance Outcomes in Pair Parameter Design Tasks
Abstract Understanding design processes and behaviors is important for building more effective design outcomes. During design tasks, teams exhibit sequences of actions that form strategies. This paper investigates patterns of design actions in a paired parameter design experiment to discover design strategies that influence outcomes. The analysis uses secondary data from a design experiment in which each pair completes a series of simplified cooperative parameter design tasks to minimize completion time. Analysis of 192 task observations uses exploratory factor analysis to identify design strategies and regression analysis to evaluate their impacts on performance outcomes. The paper finds large actions and high action size variability significantly increase completion times, leading to poor performance outcomes. Whereas results show that frequently changing input controllers within and among designers significantly reduces completion times, leading to higher performance outcomes. Discussion states that larger actions can introduce unexpected errors, while smaller and consistent actions enhance designers' understanding of the effects of each action, aiding in better planning for subsequent steps. Frequent controller switching reflects effective communication and understanding within design teams, which is crucial for cooperative tasks.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.