{"title":"塞纳湖饮用水水质指标的多元线性回归与机器学习预测","authors":"Raed Jafar, Adel Awad, Iyad Hatem, Kamel Jafar, Edmond Awad, Isam Shahrour","doi":"10.3390/smartcities6050126","DOIUrl":null,"url":null,"abstract":"Ensuring safe and clean drinking water for communities is crucial, and necessitates effective tools to monitor and predict water quality due to challenges from population growth, industrial activities, and environmental pollution. This paper evaluates the performance of multiple linear regression (MLR) and nineteen machine learning (ML) models, including algorithms based on regression, decision tree, and boosting. Models include linear regression (LR), least angle regression (LAR), Bayesian ridge chain (BR), ridge regression (Ridge), k-nearest neighbor regression (K-NN), extra tree regression (ET), and extreme gradient boosting (XGBoost). The research’s objective is to estimate the surface water quality of Al-Seine Lake in Lattakia governorate using the MLR and ML models. We used water quality data from the drinking water lake of Lattakia City, Syria, during years 2021–2022 to determine the water quality index (WQI). The predictive performance of both the MLR and ML models was evaluated using statistical methods such as the coefficient of determination (R2) and the root mean square error (RMSE) to estimate their efficiency. The results indicated that the MLR model and three of the ML models, namely linear regression (LR), least angle regression (LAR), and Bayesian ridge chain (BR), performed well in predicting the WQI. The MLR model had an R2 of 0.999 and an RMSE of 0.149, while the three ML models had an R2 of 1.0 and an RMSE of approximately 0.0. These results support using both MLR and ML models for predicting the WQI with very high accuracy, which will contribute to improving water quality management.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple Linear Regression and Machine Learning for Predicting the Drinking Water Quality Index in Al-Seine Lake\",\"authors\":\"Raed Jafar, Adel Awad, Iyad Hatem, Kamel Jafar, Edmond Awad, Isam Shahrour\",\"doi\":\"10.3390/smartcities6050126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring safe and clean drinking water for communities is crucial, and necessitates effective tools to monitor and predict water quality due to challenges from population growth, industrial activities, and environmental pollution. This paper evaluates the performance of multiple linear regression (MLR) and nineteen machine learning (ML) models, including algorithms based on regression, decision tree, and boosting. Models include linear regression (LR), least angle regression (LAR), Bayesian ridge chain (BR), ridge regression (Ridge), k-nearest neighbor regression (K-NN), extra tree regression (ET), and extreme gradient boosting (XGBoost). The research’s objective is to estimate the surface water quality of Al-Seine Lake in Lattakia governorate using the MLR and ML models. We used water quality data from the drinking water lake of Lattakia City, Syria, during years 2021–2022 to determine the water quality index (WQI). The predictive performance of both the MLR and ML models was evaluated using statistical methods such as the coefficient of determination (R2) and the root mean square error (RMSE) to estimate their efficiency. The results indicated that the MLR model and three of the ML models, namely linear regression (LR), least angle regression (LAR), and Bayesian ridge chain (BR), performed well in predicting the WQI. The MLR model had an R2 of 0.999 and an RMSE of 0.149, while the three ML models had an R2 of 1.0 and an RMSE of approximately 0.0. These results support using both MLR and ML models for predicting the WQI with very high accuracy, which will contribute to improving water quality management.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6050126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/smartcities6050126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multiple Linear Regression and Machine Learning for Predicting the Drinking Water Quality Index in Al-Seine Lake
Ensuring safe and clean drinking water for communities is crucial, and necessitates effective tools to monitor and predict water quality due to challenges from population growth, industrial activities, and environmental pollution. This paper evaluates the performance of multiple linear regression (MLR) and nineteen machine learning (ML) models, including algorithms based on regression, decision tree, and boosting. Models include linear regression (LR), least angle regression (LAR), Bayesian ridge chain (BR), ridge regression (Ridge), k-nearest neighbor regression (K-NN), extra tree regression (ET), and extreme gradient boosting (XGBoost). The research’s objective is to estimate the surface water quality of Al-Seine Lake in Lattakia governorate using the MLR and ML models. We used water quality data from the drinking water lake of Lattakia City, Syria, during years 2021–2022 to determine the water quality index (WQI). The predictive performance of both the MLR and ML models was evaluated using statistical methods such as the coefficient of determination (R2) and the root mean square error (RMSE) to estimate their efficiency. The results indicated that the MLR model and three of the ML models, namely linear regression (LR), least angle regression (LAR), and Bayesian ridge chain (BR), performed well in predicting the WQI. The MLR model had an R2 of 0.999 and an RMSE of 0.149, while the three ML models had an R2 of 1.0 and an RMSE of approximately 0.0. These results support using both MLR and ML models for predicting the WQI with very high accuracy, which will contribute to improving water quality management.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.