{"title":"综合可持续产品设计与保证和使用结束的考虑","authors":"Xinyang Liu, Pingfeng Wang","doi":"10.1115/1.4063762","DOIUrl":null,"url":null,"abstract":"Abstract The concept of integrated sustainable product design has recently emerged, aiming to incorporate downstream lifecycle performance into the initial product design to enhance sustainability. Various sustainable product design tools based on life-cycle assessment or quality function deployment have been established while the impact of reliability on circular practices has received limited attention. Recognizing the critical role of product reliability in post-design performance, this paper develops a product design optimization model that considers the warranty performance and the effect of end-of-use options. The model takes into account the effect of uncertain operating conditions on product reliability. Two optimization goals including the minimization of expected unit lifecycle cost and environmental impact are achieved by the model. To demonstrate the benefits of the integrated approach, the model is applied to an electric motor design problem. The results highlight that integrating end-of-use options in the early design phase leads to adjustments in component selection and reliability design. Moreover, the circular utilization of used products enables cost savings throughout the product's lifecycle and contributes to environmental impact reduction. Lastly, the study analyzes the effects of operating conditions, warranty policies, and take-back prices for used products on design decisions, providing valuable insights for product designers.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"2013 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Sustainable Product Design with Warranty and End-of-use Considerations\",\"authors\":\"Xinyang Liu, Pingfeng Wang\",\"doi\":\"10.1115/1.4063762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The concept of integrated sustainable product design has recently emerged, aiming to incorporate downstream lifecycle performance into the initial product design to enhance sustainability. Various sustainable product design tools based on life-cycle assessment or quality function deployment have been established while the impact of reliability on circular practices has received limited attention. Recognizing the critical role of product reliability in post-design performance, this paper develops a product design optimization model that considers the warranty performance and the effect of end-of-use options. The model takes into account the effect of uncertain operating conditions on product reliability. Two optimization goals including the minimization of expected unit lifecycle cost and environmental impact are achieved by the model. To demonstrate the benefits of the integrated approach, the model is applied to an electric motor design problem. The results highlight that integrating end-of-use options in the early design phase leads to adjustments in component selection and reliability design. Moreover, the circular utilization of used products enables cost savings throughout the product's lifecycle and contributes to environmental impact reduction. Lastly, the study analyzes the effects of operating conditions, warranty policies, and take-back prices for used products on design decisions, providing valuable insights for product designers.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063762\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063762","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Integrated Sustainable Product Design with Warranty and End-of-use Considerations
Abstract The concept of integrated sustainable product design has recently emerged, aiming to incorporate downstream lifecycle performance into the initial product design to enhance sustainability. Various sustainable product design tools based on life-cycle assessment or quality function deployment have been established while the impact of reliability on circular practices has received limited attention. Recognizing the critical role of product reliability in post-design performance, this paper develops a product design optimization model that considers the warranty performance and the effect of end-of-use options. The model takes into account the effect of uncertain operating conditions on product reliability. Two optimization goals including the minimization of expected unit lifecycle cost and environmental impact are achieved by the model. To demonstrate the benefits of the integrated approach, the model is applied to an electric motor design problem. The results highlight that integrating end-of-use options in the early design phase leads to adjustments in component selection and reliability design. Moreover, the circular utilization of used products enables cost savings throughout the product's lifecycle and contributes to environmental impact reduction. Lastly, the study analyzes the effects of operating conditions, warranty policies, and take-back prices for used products on design decisions, providing valuable insights for product designers.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.