灵长类动物的共感决定了它们大脑结构的进化

Benjamin Robira, Benoît Perez-Lamarque
{"title":"灵长类动物的共感决定了它们大脑结构的进化","authors":"Benjamin Robira, Benoît Perez-Lamarque","doi":"10.24072/pcjournal.259","DOIUrl":null,"url":null,"abstract":"The main hypotheses on the evolution of animal cognition emphasise the role of conspecifics in affecting the socio-ecological environment shaping cognition. Yet, space is often simultaneously occupied by multiple species from the same ecological guild. These sympatric species can compete for food, which may thereby stimulate or hamper cognition. Considering brain size as a proxy for cognition, we tested whether species sympatry impacted the evolution of cognition in frugivorous primates. We first retraced the evolutionary history of sympatry between frugivorous primate lineages. We then fitted phylogenetic models of the evolution of the size of several brain regions in frugivorous primates, considering or not species sympatry. We found that the evolution of the whole brain or brain regions used in immediate information processing was best fitted with models not considering sympatry. By contrast, models considering species sympatry best predicted the evolution of brain regions related to long-term memory of interactions with the socio-ecological environment, with a decrease in their size the higher the sympatry. We speculate that species sympatry, by generating intense food depletion, might lead to an over-complexification of resource spatiotemporality that counteracts the benefits of high cognitive abilities and/or might drive niche partitioning and specialisation, thereby inducing lower brain region sizes. In addition, we reported that primate species in sympatry diversify more slowly. This comparative study suggests that species sympatry significantly contributes to shaping primate evolution.","PeriodicalId":74413,"journal":{"name":"Peer community journal","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Primate sympatry shapes the evolution of their brain architecture\",\"authors\":\"Benjamin Robira, Benoît Perez-Lamarque\",\"doi\":\"10.24072/pcjournal.259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main hypotheses on the evolution of animal cognition emphasise the role of conspecifics in affecting the socio-ecological environment shaping cognition. Yet, space is often simultaneously occupied by multiple species from the same ecological guild. These sympatric species can compete for food, which may thereby stimulate or hamper cognition. Considering brain size as a proxy for cognition, we tested whether species sympatry impacted the evolution of cognition in frugivorous primates. We first retraced the evolutionary history of sympatry between frugivorous primate lineages. We then fitted phylogenetic models of the evolution of the size of several brain regions in frugivorous primates, considering or not species sympatry. We found that the evolution of the whole brain or brain regions used in immediate information processing was best fitted with models not considering sympatry. By contrast, models considering species sympatry best predicted the evolution of brain regions related to long-term memory of interactions with the socio-ecological environment, with a decrease in their size the higher the sympatry. We speculate that species sympatry, by generating intense food depletion, might lead to an over-complexification of resource spatiotemporality that counteracts the benefits of high cognitive abilities and/or might drive niche partitioning and specialisation, thereby inducing lower brain region sizes. In addition, we reported that primate species in sympatry diversify more slowly. This comparative study suggests that species sympatry significantly contributes to shaping primate evolution.\",\"PeriodicalId\":74413,\"journal\":{\"name\":\"Peer community journal\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer community journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24072/pcjournal.259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer community journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24072/pcjournal.259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

关于动物认知进化的主要假设强调同种动物在影响社会生态环境塑造认知方面的作用。然而,空间往往同时被来自同一生态协会的多个物种所占据。这些同域物种可以竞争食物,从而刺激或阻碍认知。考虑到大脑大小作为认知的代理,我们测试了物种同情是否影响了食果灵长类动物的认知进化。我们首先追溯了食果灵长类谱系之间的共情进化历史。然后,我们在考虑或不考虑物种同情的情况下,拟合了食果灵长类动物几个大脑区域大小进化的系统发育模型。我们发现,用于即时信息处理的整个大脑或大脑区域的进化最适合不考虑同情的模型。相比之下,考虑物种同系性的模型最好地预测了与社会生态环境相互作用的长期记忆相关的大脑区域的进化,它们的大小越高,同系性越小。我们推测,物种的共生关系,通过产生强烈的食物消耗,可能导致资源时空性的过度复杂,从而抵消了高认知能力和/或可能驱动生态位划分和专一化的好处,从而导致更小的大脑区域大小。此外,我们还报道了同属系统中灵长类物种多样化的速度较慢。这一比较研究表明,物种间的共生关系对灵长类动物的进化有重要的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Primate sympatry shapes the evolution of their brain architecture
The main hypotheses on the evolution of animal cognition emphasise the role of conspecifics in affecting the socio-ecological environment shaping cognition. Yet, space is often simultaneously occupied by multiple species from the same ecological guild. These sympatric species can compete for food, which may thereby stimulate or hamper cognition. Considering brain size as a proxy for cognition, we tested whether species sympatry impacted the evolution of cognition in frugivorous primates. We first retraced the evolutionary history of sympatry between frugivorous primate lineages. We then fitted phylogenetic models of the evolution of the size of several brain regions in frugivorous primates, considering or not species sympatry. We found that the evolution of the whole brain or brain regions used in immediate information processing was best fitted with models not considering sympatry. By contrast, models considering species sympatry best predicted the evolution of brain regions related to long-term memory of interactions with the socio-ecological environment, with a decrease in their size the higher the sympatry. We speculate that species sympatry, by generating intense food depletion, might lead to an over-complexification of resource spatiotemporality that counteracts the benefits of high cognitive abilities and/or might drive niche partitioning and specialisation, thereby inducing lower brain region sizes. In addition, we reported that primate species in sympatry diversify more slowly. This comparative study suggests that species sympatry significantly contributes to shaping primate evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High quality genome assembly and annotation (v1) of the eukaryotic terrestrial microalga Coccomyxa viridis SAG 216-4 Ecotoxicity of lanthanides to Daphnia magna: insights from elemental behavior and speciation in a standardized test medium T7 DNA polymerase treatment improves quantitative sequencing of both double-stranded and single-stranded DNA viruses Differences in specificity, development time and virulence between two acanthocephalan parasites, infecting two cryptic species of Gammarus fossarum Multiproxy analysis exploring patterns of diet and disease in dental calculus and skeletal remains from a 19th century Dutch population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1