Minghui Kuang, Ramin Safa, Seyyed Ahmad Edalatpanah, Robert S. Keyser
{"title":"用于产品评论情感分析的混合深度学习方法","authors":"Minghui Kuang, Ramin Safa, Seyyed Ahmad Edalatpanah, Robert S. Keyser","doi":"10.22190/fume230901038k","DOIUrl":null,"url":null,"abstract":"Product reviews play a crucial role in providing valuable insights to consumers and producers. Analyzing the vast amount of data generated around a product, such as posts, comments, and views, can be challenging for business intelligence purposes. Sentiment analysis of this content helps both consumers and producers gain a better understanding of the market status, enabling them to make informed decisions. In this study, we propose a novel hybrid approach based on deep neural networks (DNNs) for sentiment analysis in product reviews, focusing on the classification of sentiments expressed. Our approach utilizes the recursive neural network (RNN) algorithm for sentiment classification. To address the imbalanced distribution of positive and negative samples in social network data, we employ a resampling technique that balances the dataset by increasing samples from the minority class and decreasing samples from the majority class. We evaluate our approach using Amazon data, comprising four product categories: clothing, cars, luxury goods, and household appliances. Experimental results demonstrate that our proposed approach performs well in sentiment analysis for product reviews, particularly in the context of digital marketing. Furthermore, the attention-based RNN algorithm outperforms the baseline RNN by approximately 5%. Notably, the study reveals consumer sentiment variations across different products, particularly in relation to appearance and price aspects.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A HYBRID DEEP LEARNING APPROACH FOR SENTIMENT ANALYSIS IN PRODUCT REVIEWS\",\"authors\":\"Minghui Kuang, Ramin Safa, Seyyed Ahmad Edalatpanah, Robert S. Keyser\",\"doi\":\"10.22190/fume230901038k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Product reviews play a crucial role in providing valuable insights to consumers and producers. Analyzing the vast amount of data generated around a product, such as posts, comments, and views, can be challenging for business intelligence purposes. Sentiment analysis of this content helps both consumers and producers gain a better understanding of the market status, enabling them to make informed decisions. In this study, we propose a novel hybrid approach based on deep neural networks (DNNs) for sentiment analysis in product reviews, focusing on the classification of sentiments expressed. Our approach utilizes the recursive neural network (RNN) algorithm for sentiment classification. To address the imbalanced distribution of positive and negative samples in social network data, we employ a resampling technique that balances the dataset by increasing samples from the minority class and decreasing samples from the majority class. We evaluate our approach using Amazon data, comprising four product categories: clothing, cars, luxury goods, and household appliances. Experimental results demonstrate that our proposed approach performs well in sentiment analysis for product reviews, particularly in the context of digital marketing. Furthermore, the attention-based RNN algorithm outperforms the baseline RNN by approximately 5%. Notably, the study reveals consumer sentiment variations across different products, particularly in relation to appearance and price aspects.\",\"PeriodicalId\":51338,\"journal\":{\"name\":\"Facta Universitatis-Series Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fume230901038k\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fume230901038k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A HYBRID DEEP LEARNING APPROACH FOR SENTIMENT ANALYSIS IN PRODUCT REVIEWS
Product reviews play a crucial role in providing valuable insights to consumers and producers. Analyzing the vast amount of data generated around a product, such as posts, comments, and views, can be challenging for business intelligence purposes. Sentiment analysis of this content helps both consumers and producers gain a better understanding of the market status, enabling them to make informed decisions. In this study, we propose a novel hybrid approach based on deep neural networks (DNNs) for sentiment analysis in product reviews, focusing on the classification of sentiments expressed. Our approach utilizes the recursive neural network (RNN) algorithm for sentiment classification. To address the imbalanced distribution of positive and negative samples in social network data, we employ a resampling technique that balances the dataset by increasing samples from the minority class and decreasing samples from the majority class. We evaluate our approach using Amazon data, comprising four product categories: clothing, cars, luxury goods, and household appliances. Experimental results demonstrate that our proposed approach performs well in sentiment analysis for product reviews, particularly in the context of digital marketing. Furthermore, the attention-based RNN algorithm outperforms the baseline RNN by approximately 5%. Notably, the study reveals consumer sentiment variations across different products, particularly in relation to appearance and price aspects.
期刊介绍:
Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.