{"title":"半潜式海上网箱与浮式海上风力机共存方案设计与动力分析","authors":"Yu Ma, Lin Li, Muk Chen Ong, Jingzhe Jin, Biao Su","doi":"10.1115/1.4063806","DOIUrl":null,"url":null,"abstract":"Abstract Clean energy captured by offshore wind turbines have been widely used for supporting onshore activities. In the near future, facilities such as offshore wind turbines can also play an important role in energy transition of offshore activities. Offshore wind energy can be employed for electrifying the operations in offshore fish farms, which are traditionally supplied by diesel-engine barges/generators. Based on this motivation, this study focuses on a design of shared mooring system between a semi-submersible offshore fish cage and a spar-type floating wind turbine. A numerical model of the proposed shared-mooring system is implemented in a global response analysis software SIMA for performing fully coupled time domain simulations. The configuration of the shared mooring line is determined using an engineering approach which comprises Irvine's formulation, system eigenvalue analysis and cost estimation. Moreover, relevant case studies by altering the environmental conditions are performed. Extreme operational conditions that may give large relative motions are investigated thoroughly. The dynamic performance of the integrated system is compared with that of individual structures. The global motion of the floating wind turbine and its mooring line's tension behavior are obviously influenced by the existence of the shared line. In general, the present work investigates the feasibility of a shared-mooring system for these types of offshore structures and further gives insights about the engineering design procedure.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"277 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and dynamic analysis of a co-existence solution between a semi-submersible offshore fish cage and a spar-type floating offshore wind turbine\",\"authors\":\"Yu Ma, Lin Li, Muk Chen Ong, Jingzhe Jin, Biao Su\",\"doi\":\"10.1115/1.4063806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Clean energy captured by offshore wind turbines have been widely used for supporting onshore activities. In the near future, facilities such as offshore wind turbines can also play an important role in energy transition of offshore activities. Offshore wind energy can be employed for electrifying the operations in offshore fish farms, which are traditionally supplied by diesel-engine barges/generators. Based on this motivation, this study focuses on a design of shared mooring system between a semi-submersible offshore fish cage and a spar-type floating wind turbine. A numerical model of the proposed shared-mooring system is implemented in a global response analysis software SIMA for performing fully coupled time domain simulations. The configuration of the shared mooring line is determined using an engineering approach which comprises Irvine's formulation, system eigenvalue analysis and cost estimation. Moreover, relevant case studies by altering the environmental conditions are performed. Extreme operational conditions that may give large relative motions are investigated thoroughly. The dynamic performance of the integrated system is compared with that of individual structures. The global motion of the floating wind turbine and its mooring line's tension behavior are obviously influenced by the existence of the shared line. In general, the present work investigates the feasibility of a shared-mooring system for these types of offshore structures and further gives insights about the engineering design procedure.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063806\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063806","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Design and dynamic analysis of a co-existence solution between a semi-submersible offshore fish cage and a spar-type floating offshore wind turbine
Abstract Clean energy captured by offshore wind turbines have been widely used for supporting onshore activities. In the near future, facilities such as offshore wind turbines can also play an important role in energy transition of offshore activities. Offshore wind energy can be employed for electrifying the operations in offshore fish farms, which are traditionally supplied by diesel-engine barges/generators. Based on this motivation, this study focuses on a design of shared mooring system between a semi-submersible offshore fish cage and a spar-type floating wind turbine. A numerical model of the proposed shared-mooring system is implemented in a global response analysis software SIMA for performing fully coupled time domain simulations. The configuration of the shared mooring line is determined using an engineering approach which comprises Irvine's formulation, system eigenvalue analysis and cost estimation. Moreover, relevant case studies by altering the environmental conditions are performed. Extreme operational conditions that may give large relative motions are investigated thoroughly. The dynamic performance of the integrated system is compared with that of individual structures. The global motion of the floating wind turbine and its mooring line's tension behavior are obviously influenced by the existence of the shared line. In general, the present work investigates the feasibility of a shared-mooring system for these types of offshore structures and further gives insights about the engineering design procedure.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.