非轴对称端壁型1.5级轴流涡轮轮缘密封吹扫流动喷射对主流的气动影响

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of the Global Power and Propulsion Society Pub Date : 2023-04-28 DOI:10.33737/jgpps/162078
Lukas Schäflein, Johannes Janssen, Henri Brandies, Peter Jeschke, Stephan Behre
{"title":"非轴对称端壁型1.5级轴流涡轮轮缘密封吹扫流动喷射对主流的气动影响","authors":"Lukas Schäflein, Johannes Janssen, Henri Brandies, Peter Jeschke, Stephan Behre","doi":"10.33737/jgpps/162078","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation of the aerodynamic influence of rim seal purge flow injection on the main flow in a 1.5-stage turbine with non-axisymmetric end walls and a bowed stator using experimental flow measurements and unsteady RANS simulations. The study focuses on the secondary vortex structures formed in the rotor passages of the 1.5-stage axial turbine rig. Through performance map measurements, it was found that the efficiency gain of the non-axisymmetric configuration is partially eliminated by the injection of purge flow. Numerical investigations, which are supported by detailed flow measurements with five-hole probes and hot-wire probes, revealed that the injection of purge air flow intensifies vortex structures near the hub, thereby generating additional losses. These resulting vortex structures are highly similar both in the axisymmetric baseline and the non-axisymmetric configuration and are the result of jet-like vortices emerging from the cavity. From these findings, it can be concluded that the non-axisymmetric contour and the bowed stator no longer provides any efficiency benefit near the hub. Only the near the casing, where the flow is not affected by the purge flow, the optimized configuration continues to improve the efficiency of the rig by homogenizing the stator outflow and thus reducing the secondary flow structures in the rotor passages.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic influence of rim seal purge flow injection on the main flow in a 1.5-stage axial turbine with nonaxisymmetric end wall contouring\",\"authors\":\"Lukas Schäflein, Johannes Janssen, Henri Brandies, Peter Jeschke, Stephan Behre\",\"doi\":\"10.33737/jgpps/162078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an investigation of the aerodynamic influence of rim seal purge flow injection on the main flow in a 1.5-stage turbine with non-axisymmetric end walls and a bowed stator using experimental flow measurements and unsteady RANS simulations. The study focuses on the secondary vortex structures formed in the rotor passages of the 1.5-stage axial turbine rig. Through performance map measurements, it was found that the efficiency gain of the non-axisymmetric configuration is partially eliminated by the injection of purge flow. Numerical investigations, which are supported by detailed flow measurements with five-hole probes and hot-wire probes, revealed that the injection of purge air flow intensifies vortex structures near the hub, thereby generating additional losses. These resulting vortex structures are highly similar both in the axisymmetric baseline and the non-axisymmetric configuration and are the result of jet-like vortices emerging from the cavity. From these findings, it can be concluded that the non-axisymmetric contour and the bowed stator no longer provides any efficiency benefit near the hub. Only the near the casing, where the flow is not affected by the purge flow, the optimized configuration continues to improve the efficiency of the rig by homogenizing the stator outflow and thus reducing the secondary flow structures in the rotor passages.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/jgpps/162078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/162078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文采用实验流动测量和非定常RANS模拟,研究了边缘密封吹扫流动喷射对非轴对称端壁弯曲定子1.5级涡轮主流的气动影响。重点研究了1.5级轴向涡轮装置转子通道中形成的二次涡结构。通过性能图测量,发现吹扫流的注入部分消除了非轴对称结构的效率增益。利用五孔探针和热线探针进行了详细的流动测量,结果表明吹扫气流的注入加剧了轮毂附近的涡结构,从而产生了额外的损失。由此产生的涡结构在轴对称基线和非轴对称配置中都高度相似,并且是由腔中出现的射流涡引起的。从这些发现可以得出结论,非轴对称轮廓和弯曲定子不再提供任何效率效益附近轮毂。只有在机匣附近,流动不受吹扫流影响的地方,优化后的配置通过均匀化定子出口,从而减少转子通道中的二次流结构,继续提高钻机的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerodynamic influence of rim seal purge flow injection on the main flow in a 1.5-stage axial turbine with nonaxisymmetric end wall contouring
This paper presents an investigation of the aerodynamic influence of rim seal purge flow injection on the main flow in a 1.5-stage turbine with non-axisymmetric end walls and a bowed stator using experimental flow measurements and unsteady RANS simulations. The study focuses on the secondary vortex structures formed in the rotor passages of the 1.5-stage axial turbine rig. Through performance map measurements, it was found that the efficiency gain of the non-axisymmetric configuration is partially eliminated by the injection of purge flow. Numerical investigations, which are supported by detailed flow measurements with five-hole probes and hot-wire probes, revealed that the injection of purge air flow intensifies vortex structures near the hub, thereby generating additional losses. These resulting vortex structures are highly similar both in the axisymmetric baseline and the non-axisymmetric configuration and are the result of jet-like vortices emerging from the cavity. From these findings, it can be concluded that the non-axisymmetric contour and the bowed stator no longer provides any efficiency benefit near the hub. Only the near the casing, where the flow is not affected by the purge flow, the optimized configuration continues to improve the efficiency of the rig by homogenizing the stator outflow and thus reducing the secondary flow structures in the rotor passages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
期刊最新文献
Thermodynamic performance study of simplified precooled engine cycle with coupling power output Direct multi-fidelity integration of 3D CFD models in a gas turbine with numerical zooming method A novel performance adaptation method for aero-engine matching over a wide operating range Swirling flow field reconstruction and cooling performance analysis based on experimental observations using physics-informed neural networks Flow physics during durge of an axial-centrifugal compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1