{"title":"用于编程组织的磁矩阵驱动","authors":"Ioanna Bakaimi, Ritu Raman","doi":"10.1016/j.device.2023.100116","DOIUrl":null,"url":null,"abstract":"Professor Ritu Raman is a mechanical engineer at the Massachusetts Institute of Technology, where her work focuses on the development of soft robots using biological materials. The following discussion focuses on her group’s recent work published in Device and presents a magnetically actuated extracellular matrix that can be used to program morphological and functional anisotropy in tissues such as skeletal muscles. Importantly, this work highlights the potential to control a wide range of hydrogel chemistries for modulating complex multicellular tissues using magnetic forces.","PeriodicalId":101324,"journal":{"name":"Device","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic matrix actuation for programming tissues\",\"authors\":\"Ioanna Bakaimi, Ritu Raman\",\"doi\":\"10.1016/j.device.2023.100116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Professor Ritu Raman is a mechanical engineer at the Massachusetts Institute of Technology, where her work focuses on the development of soft robots using biological materials. The following discussion focuses on her group’s recent work published in Device and presents a magnetically actuated extracellular matrix that can be used to program morphological and functional anisotropy in tissues such as skeletal muscles. Importantly, this work highlights the potential to control a wide range of hydrogel chemistries for modulating complex multicellular tissues using magnetic forces.\",\"PeriodicalId\":101324,\"journal\":{\"name\":\"Device\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Device\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.device.2023.100116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Device","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.device.2023.100116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Professor Ritu Raman is a mechanical engineer at the Massachusetts Institute of Technology, where her work focuses on the development of soft robots using biological materials. The following discussion focuses on her group’s recent work published in Device and presents a magnetically actuated extracellular matrix that can be used to program morphological and functional anisotropy in tissues such as skeletal muscles. Importantly, this work highlights the potential to control a wide range of hydrogel chemistries for modulating complex multicellular tissues using magnetic forces.