纳米计算中基于qca的t触发器的初步设计与分析

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electrical Engineering-elektrotechnicky Casopis Pub Date : 2023-10-01 DOI:10.2478/jee-2023-0041
Angshuman Khan
{"title":"纳米计算中基于qca的t触发器的初步设计与分析","authors":"Angshuman Khan","doi":"10.2478/jee-2023-0041","DOIUrl":null,"url":null,"abstract":"Abstract This work presents a new T-flipflop design based on quantum-dot cellular automata technology, with the standard two inputs ( T and clock) and two outputs ( Q and Q̄ ). It adheres to the typical QCA layout design approach, which consists of two majority voters and one inverter (to produce the complementary output, Q̄ ). It is a single-layered design with no crossover. A memory loop is used to retain previous values and aid the toggling operation of the T-flipflop. This design achieves improved functionality and reduced area requirement compared to existing designs. In addition, the study investigated energy loss and cost functions. In particular, the total energy loss is reduced by 10% and 22% compared to the best design when analyzed with the QCAPro and QCADesigner-E (QDE) tools, respectively. The area-delay and energy-delay cost functions outperform the best current design by 1.3 and 1.07 times, respectively. Overall, this work advances QCA-based flipflop (QTFF) designs and emphasizes the potential of QCA technology for creating effective QCA circuits.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"41 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary design and analysis of QCA-based T-flipflop for nanocomputing\",\"authors\":\"Angshuman Khan\",\"doi\":\"10.2478/jee-2023-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work presents a new T-flipflop design based on quantum-dot cellular automata technology, with the standard two inputs ( T and clock) and two outputs ( Q and Q̄ ). It adheres to the typical QCA layout design approach, which consists of two majority voters and one inverter (to produce the complementary output, Q̄ ). It is a single-layered design with no crossover. A memory loop is used to retain previous values and aid the toggling operation of the T-flipflop. This design achieves improved functionality and reduced area requirement compared to existing designs. In addition, the study investigated energy loss and cost functions. In particular, the total energy loss is reduced by 10% and 22% compared to the best design when analyzed with the QCAPro and QCADesigner-E (QDE) tools, respectively. The area-delay and energy-delay cost functions outperform the best current design by 1.3 and 1.07 times, respectively. Overall, this work advances QCA-based flipflop (QTFF) designs and emphasizes the potential of QCA technology for creating effective QCA circuits.\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2023-0041\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jee-2023-0041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于量子点元胞自动机技术的新型T触发器设计,具有标准的两个输入(T和时钟)和两个输出(Q和Q)。它遵循典型的QCA布局设计方法,由两个多数选民和一个逆变器(产生互补输出,Q)组成。这是一个单层的设计,没有交叉。记忆循环用于保留先前的值并帮助t触发器的切换操作。与现有设计相比,该设计实现了功能的改进和面积的减少。此外,研究了能量损失和成本函数。特别是,当使用QCAPro和qcaddesigner - e (QDE)工具进行分析时,与最佳设计相比,总能量损失分别减少了10%和22%。区域延迟和能量延迟成本函数分别比最佳电流设计高1.3倍和1.07倍。总的来说,这项工作推进了基于QCA的触发器(QTFF)设计,并强调了QCA技术在创建有效QCA电路方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elementary design and analysis of QCA-based T-flipflop for nanocomputing
Abstract This work presents a new T-flipflop design based on quantum-dot cellular automata technology, with the standard two inputs ( T and clock) and two outputs ( Q and Q̄ ). It adheres to the typical QCA layout design approach, which consists of two majority voters and one inverter (to produce the complementary output, Q̄ ). It is a single-layered design with no crossover. A memory loop is used to retain previous values and aid the toggling operation of the T-flipflop. This design achieves improved functionality and reduced area requirement compared to existing designs. In addition, the study investigated energy loss and cost functions. In particular, the total energy loss is reduced by 10% and 22% compared to the best design when analyzed with the QCAPro and QCADesigner-E (QDE) tools, respectively. The area-delay and energy-delay cost functions outperform the best current design by 1.3 and 1.07 times, respectively. Overall, this work advances QCA-based flipflop (QTFF) designs and emphasizes the potential of QCA technology for creating effective QCA circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Engineering-elektrotechnicky Casopis
Journal of Electrical Engineering-elektrotechnicky Casopis 工程技术-工程:电子与电气
CiteScore
1.70
自引率
12.50%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising. -Automation and Control- Computer Engineering- Electronics and Microelectronics- Electro-physics and Electromagnetism- Material Science- Measurement and Metrology- Power Engineering and Energy Conversion- Signal Processing and Telecommunications
期刊最新文献
Elementary design and analysis of QCA-based T-flipflop for nanocomputing Model-free predictive current control of Syn-RM based on time delay estimation approach Design of a battery charging system fed by thermoelectric generator panels using MPPT techniques Methods of computer modeling of electromagnetic field propagation in urban scenarios for Internet of Things Precision of sinewave amplitude estimation in the presence of additive noise and quantization error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1