在无领导的会合协议中找到切断是很容易的

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Logical Methods in Computer Science Pub Date : 2023-10-12 DOI:10.46298/lmcs-19(4:2)2023
A. R. Balasubramanian, Javier Esparza, Mikhail Raskin
{"title":"在无领导的会合协议中找到切断是很容易的","authors":"A. R. Balasubramanian, Javier Esparza, Mikhail Raskin","doi":"10.46298/lmcs-19(4:2)2023","DOIUrl":null,"url":null,"abstract":"In rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number $B$ such that all initial configurations of the protocol with at least $B$ agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper (Horn and Sangnier, CONCUR 2020), Horn and Sangnier proved that the cut-off problem is decidable (and at least as hard as the Petri net reachability problem) for protocols with a leader, and in EXPSPACE for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to PSPACE and NP, respectively. The problem of lowering these upper bounds or finding matching lower bounds was left open. We show that the cut-off problem is P-complete for leaderless protocols and in NC for leaderless symmetric protocols. Further, we also consider a variant of the cut-off problem suggested in (Horn and Sangnier, CONCUR 2020), which we call the bounded-loss cut-off problem and prove that this problem is P-complete for leaderless protocols and NL-complete for leaderless symmetric protocols. Finally, by reusing some of the techniques applied for the analysis of leaderless protocols, we show that the cut-off problem for symmetric protocols with a leader is NP-complete, thereby improving upon all the elementary upper bounds of (Horn and Sangnier, CONCUR 2020).","PeriodicalId":49904,"journal":{"name":"Logical Methods in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy\",\"authors\":\"A. R. Balasubramanian, Javier Esparza, Mikhail Raskin\",\"doi\":\"10.46298/lmcs-19(4:2)2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number $B$ such that all initial configurations of the protocol with at least $B$ agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper (Horn and Sangnier, CONCUR 2020), Horn and Sangnier proved that the cut-off problem is decidable (and at least as hard as the Petri net reachability problem) for protocols with a leader, and in EXPSPACE for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to PSPACE and NP, respectively. The problem of lowering these upper bounds or finding matching lower bounds was left open. We show that the cut-off problem is P-complete for leaderless protocols and in NC for leaderless symmetric protocols. Further, we also consider a variant of the cut-off problem suggested in (Horn and Sangnier, CONCUR 2020), which we call the bounded-loss cut-off problem and prove that this problem is P-complete for leaderless protocols and NL-complete for leaderless symmetric protocols. Finally, by reusing some of the techniques applied for the analysis of leaderless protocols, we show that the cut-off problem for symmetric protocols with a leader is NP-complete, thereby improving upon all the elementary upper bounds of (Horn and Sangnier, CONCUR 2020).\",\"PeriodicalId\":49904,\"journal\":{\"name\":\"Logical Methods in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logical Methods in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-19(4:2)2023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Methods in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(4:2)2023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在会合协议中,任意大量不可区分的有限状态代理成对交互。截止问题询问是否存在一个数字$B$,使得至少有$B$代理处于给定初始状态的协议的所有初始配置可以达到所有代理处于给定最终状态的最终配置。在最近的一篇论文(Horn和Sangnier, CONCUR 2020)中,Horn和Sangnier证明了对于有领导者的协议和EXPSPACE中的无领导者协议,截止问题是可确定的(至少与Petri网可达性问题一样难)。此外,对于特殊的对称协议类,他们将这些边界分别简化为PSPACE和NP。降低这些上界或找到匹配的下界的问题就没有解决了。我们证明了无领导协议的截止问题是p完全的,无领导对称协议的截止问题是NC的。此外,我们还考虑了(Horn and Sangnier, CONCUR 2020)中提出的截止问题的一个变体,我们称之为有界损失截止问题,并证明该问题对于无领导协议是p完全的,对于无领导对称协议是nl完全的。最后,通过重用一些用于分析无领导者协议的技术,我们证明了具有领导者的对称协议的截止问题是np完全的,从而改进了(Horn和Sangnier, CONCUR 2020)的所有初等上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy
In rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number $B$ such that all initial configurations of the protocol with at least $B$ agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper (Horn and Sangnier, CONCUR 2020), Horn and Sangnier proved that the cut-off problem is decidable (and at least as hard as the Petri net reachability problem) for protocols with a leader, and in EXPSPACE for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to PSPACE and NP, respectively. The problem of lowering these upper bounds or finding matching lower bounds was left open. We show that the cut-off problem is P-complete for leaderless protocols and in NC for leaderless symmetric protocols. Further, we also consider a variant of the cut-off problem suggested in (Horn and Sangnier, CONCUR 2020), which we call the bounded-loss cut-off problem and prove that this problem is P-complete for leaderless protocols and NL-complete for leaderless symmetric protocols. Finally, by reusing some of the techniques applied for the analysis of leaderless protocols, we show that the cut-off problem for symmetric protocols with a leader is NP-complete, thereby improving upon all the elementary upper bounds of (Horn and Sangnier, CONCUR 2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Logical Methods in Computer Science
Logical Methods in Computer Science 工程技术-计算机:理论方法
CiteScore
1.80
自引率
0.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: Logical Methods in Computer Science is a fully refereed, open access, free, electronic journal. It welcomes papers on theoretical and practical areas in computer science involving logical methods, taken in a broad sense; some particular areas within its scope are listed below. Papers are refereed in the traditional way, with two or more referees per paper. Copyright is retained by the author. Topics of Logical Methods in Computer Science: Algebraic methods Automata and logic Automated deduction Categorical models and logic Coalgebraic methods Computability and Logic Computer-aided verification Concurrency theory Constraint programming Cyber-physical systems Database theory Defeasible reasoning Domain theory Emerging topics: Computational systems in biology Emerging topics: Quantum computation and logic Finite model theory Formalized mathematics Functional programming and lambda calculus Inductive logic and learning Interactive proof checking Logic and algorithms Logic and complexity Logic and games Logic and probability Logic for knowledge representation Logic programming Logics of programs Modal and temporal logics Program analysis and type checking Program development and specification Proof complexity Real time and hybrid systems Reasoning about actions and planning Satisfiability Security Semantics of programming languages Term rewriting and equational logic Type theory and constructive mathematics.
期刊最新文献
Node Replication: Theory And Practice A categorical characterization of relative entropy on standard Borel spaces The Power-Set Construction for Tree Algebras Token Games and History-Deterministic Quantitative-Automata A coherent differential PCF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1