印尼语情感分类:一种带超频带调谐的CNN方法

Muhammad Yeza Baihaqi, Edmun Halawa, Riri Asyahira Sariati Syah, Anniza Nurrahma, Wilbert Wijaya
{"title":"印尼语情感分类:一种带超频带调谐的CNN方法","authors":"Muhammad Yeza Baihaqi, Edmun Halawa, Riri Asyahira Sariati Syah, Anniza Nurrahma, Wilbert Wijaya","doi":"10.24002/jbi.v14i02.7558","DOIUrl":null,"url":null,"abstract":"In today's world, there is a high demand for accurate techniques to classify emotions in various fields. This study proposed utilizing a Convolutional Neural Network (CNN) optimized with a Hyperband Tuner (HT) to perform the Emotion Classification task in the Indonesian language effectively. Various feature extraction techniques experiments were conducted to explore the best combinations of feature extraction and CNN for the data set, including CountVectorizer (CV), TF-IDF, and Keras Tokenizer (KT). Last, the proposed methodology was evaluated and compared to the stateof-the-art techniques, including K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), and Boosting SVM. The experimental results revealed that the proposed method in this research outperforms the existing technique as evidenced by the accuracy, precision, recall, and F1-score metrics, which respectively reached 71.5655%, 71.5483%, 71.5655%, and 71.0041%.","PeriodicalId":499081,"journal":{"name":"Jurnal Buana Informatika","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotion Classification in Indonesian Language: A CNN Approach with Hyperband Tuning\",\"authors\":\"Muhammad Yeza Baihaqi, Edmun Halawa, Riri Asyahira Sariati Syah, Anniza Nurrahma, Wilbert Wijaya\",\"doi\":\"10.24002/jbi.v14i02.7558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's world, there is a high demand for accurate techniques to classify emotions in various fields. This study proposed utilizing a Convolutional Neural Network (CNN) optimized with a Hyperband Tuner (HT) to perform the Emotion Classification task in the Indonesian language effectively. Various feature extraction techniques experiments were conducted to explore the best combinations of feature extraction and CNN for the data set, including CountVectorizer (CV), TF-IDF, and Keras Tokenizer (KT). Last, the proposed methodology was evaluated and compared to the stateof-the-art techniques, including K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), and Boosting SVM. The experimental results revealed that the proposed method in this research outperforms the existing technique as evidenced by the accuracy, precision, recall, and F1-score metrics, which respectively reached 71.5655%, 71.5483%, 71.5655%, and 71.0041%.\",\"PeriodicalId\":499081,\"journal\":{\"name\":\"Jurnal Buana Informatika\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Buana Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24002/jbi.v14i02.7558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Buana Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/jbi.v14i02.7558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当今世界,在各个领域都对准确的情绪分类技术有很高的需求。本研究提出利用超带调谐器(Hyperband Tuner, HT)优化的卷积神经网络(Convolutional Neural Network, CNN)来有效执行印尼语的情绪分类任务。为了探索数据集特征提取和CNN的最佳组合,我们进行了各种特征提取技术实验,包括CountVectorizer (CV)、TF-IDF和Keras Tokenizer (KT)。最后,对所提出的方法进行了评估,并与最先进的技术进行了比较,包括k -近邻(KNN)、决策树(DT)、朴素贝叶斯(NB)和Boosting SVM。实验结果表明,本文方法在准确率、精密度、召回率和f1评分指标上均优于现有方法,分别达到71.5655%、71.5483%、71.5655%和71.0041%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotion Classification in Indonesian Language: A CNN Approach with Hyperband Tuning
In today's world, there is a high demand for accurate techniques to classify emotions in various fields. This study proposed utilizing a Convolutional Neural Network (CNN) optimized with a Hyperband Tuner (HT) to perform the Emotion Classification task in the Indonesian language effectively. Various feature extraction techniques experiments were conducted to explore the best combinations of feature extraction and CNN for the data set, including CountVectorizer (CV), TF-IDF, and Keras Tokenizer (KT). Last, the proposed methodology was evaluated and compared to the stateof-the-art techniques, including K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), and Boosting SVM. The experimental results revealed that the proposed method in this research outperforms the existing technique as evidenced by the accuracy, precision, recall, and F1-score metrics, which respectively reached 71.5655%, 71.5483%, 71.5655%, and 71.0041%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perbandingan Pytesseract dan Template Matching Untuk Otomatisasi Input Data KTP Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT Classification of Cumulonimbus Cloud Formation based on Himawari Images using Convolutional Neural Network model Googlenet Moving Average untuk Prediksi Harga Saham dengan Linear Regression Analisis Usability Web SIATMA dengan Metode Heuristic Evaluation dan System Usability Scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1