{"title":"人工智能在眼科中的应用解决眼底图像的语义分割问题","authors":"N.S. Demin, N.Y. Ilyasova, R.A. Paringer, D.V. Kirsh","doi":"10.18287/2412-6179-co-1283","DOIUrl":null,"url":null,"abstract":"The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"8 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images\",\"authors\":\"N.S. Demin, N.Y. Ilyasova, R.A. Paringer, D.V. Kirsh\",\"doi\":\"10.18287/2412-6179-co-1283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images
The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.