人工智能在眼科中的应用解决眼底图像的语义分割问题

IF 1.1 Q4 OPTICS Computer Optics Pub Date : 2023-10-01 DOI:10.18287/2412-6179-co-1283
N.S. Demin, N.Y. Ilyasova, R.A. Paringer, D.V. Kirsh
{"title":"人工智能在眼科中的应用解决眼底图像的语义分割问题","authors":"N.S. Demin, N.Y. Ilyasova, R.A. Paringer, D.V. Kirsh","doi":"10.18287/2412-6179-co-1283","DOIUrl":null,"url":null,"abstract":"The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"8 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images\",\"authors\":\"N.S. Demin, N.Y. Ilyasova, R.A. Paringer, D.V. Kirsh\",\"doi\":\"10.18287/2412-6179-co-1283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文以眼底图像的语义分割问题为例,介绍了人工智能在眼科疾病诊断和治疗中的主要应用。将基于纹理特征的经典语义分割方法与基于神经网络的语义分割方法进行了比较。阐述了神经网络在生物医学中应用的基本问题。提出了一种基于两个神经网络的激光凝固最佳暴露区域选择方法。第一个网络用于检测眼底解剖对象,第二个网络用于选择黄斑水肿区域。感兴趣的区域由水肿区域形成,同时考虑到其中解剖物体的位置。对几种解决水肿区域选择问题的神经网络结构进行了比较分析。采用unet++的神经网络结构对水肿区域的选取效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images
The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
期刊最新文献
Six-wave interaction with double wavefront reversal in multimode waveguides with Kerr and thermal nonlinearities Generation and study of the synthetic brain electron microscopy dataset for segmentation purpose Gradient method for designing cascaded DOEs and its application in the problem of classifying handwritten digits Method of multilayer object sectioning based on a light scattering model Investigation of polarization transformations performed with a refractive bi-conical axicon using the FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1