R. Chang, Z.X. Mao, J. Hu, H.C. Bai, C.J. Zhou, Y. Yang, S. Gao
{"title":"基于多无人机协同系统和YOLOv7的输电线路异物检测研究","authors":"R. Chang, Z.X. Mao, J. Hu, H.C. Bai, C.J. Zhou, Y. Yang, S. Gao","doi":"10.18287/2412-6179-co-1257","DOIUrl":null,"url":null,"abstract":"The unique plateau geographical features and variable weather of Yunnan, China make transmission lines in this region more susceptible to coverage and damage by various foreign bodies compared to flat areas. The mountainous terrain also presents great challenges for inspecting and removing such objects. In order to improve the efficiency and detection accuracy of foreign body inspection of transmission lines, we propose a multi-UAV collaborative system specifically designed for the geographical characteristics of Yunnan's transmission lines in this paper. Additionally, the image data of foreign bodies was augmented, and the YOLOv7 target detection model, which offers a more balanced trade-off between precision and speed, was adopted to improve the accuracy and speed of foreign body detection.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"50 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on foreign body detection in transmission lines based on a multi-UAV cooperative system and YOLOv7\",\"authors\":\"R. Chang, Z.X. Mao, J. Hu, H.C. Bai, C.J. Zhou, Y. Yang, S. Gao\",\"doi\":\"10.18287/2412-6179-co-1257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unique plateau geographical features and variable weather of Yunnan, China make transmission lines in this region more susceptible to coverage and damage by various foreign bodies compared to flat areas. The mountainous terrain also presents great challenges for inspecting and removing such objects. In order to improve the efficiency and detection accuracy of foreign body inspection of transmission lines, we propose a multi-UAV collaborative system specifically designed for the geographical characteristics of Yunnan's transmission lines in this paper. Additionally, the image data of foreign bodies was augmented, and the YOLOv7 target detection model, which offers a more balanced trade-off between precision and speed, was adopted to improve the accuracy and speed of foreign body detection.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Research on foreign body detection in transmission lines based on a multi-UAV cooperative system and YOLOv7
The unique plateau geographical features and variable weather of Yunnan, China make transmission lines in this region more susceptible to coverage and damage by various foreign bodies compared to flat areas. The mountainous terrain also presents great challenges for inspecting and removing such objects. In order to improve the efficiency and detection accuracy of foreign body inspection of transmission lines, we propose a multi-UAV collaborative system specifically designed for the geographical characteristics of Yunnan's transmission lines in this paper. Additionally, the image data of foreign bodies was augmented, and the YOLOv7 target detection model, which offers a more balanced trade-off between precision and speed, was adopted to improve the accuracy and speed of foreign body detection.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.