{"title":"利用统计力学分析人体皮质骨中骨性微裂纹的构成关系","authors":"S. García-Vilana, D. Sánchez-Molina","doi":"10.1007/s00161-023-01257-1","DOIUrl":null,"url":null,"abstract":"<div><p>The post-elastic mechanical behavior of cortical bone, which is represented by extensive microcracking once the elastic regime is exceeded, has been characterized by a nonlinear constitutive relationship for osteonal microcracking. The relationship/model is based on the formalism of Statistical Mechanics, allowing the degree of irreversibility to be calculated using the increase in entropy associated with the progression of microcracking. Specific tensile and bending tests were conducted to compare theoretical predictions of constitutive relationships to empirical curves. In addition, the tests were utilized to determine the model’s parameters, whose values were used to explicitly calculate the entropy increase. A large sample was used: 51 cortical bone coupons (dog-bone-shaped specimens) were extracted from the 4th ribs of numerous individuals and subjected to uniaxial tensile testing. Additionally, fifteen complete 4th ribs were used for bending tests. Displacement and strain fields were measured for both types of tests using digital image correlation or video recordings of the tests. All experimental specimen data were successfully fitted to the model, and all constitutive parameter values were found to be correlated with anthropometric variables. Explicit entropy calculations indicate that microcracking is minimal for low strain and, initially, stress is nearly proportional to strain. After a certain point, significant microcracking occurs, and the relationship between stress and strain becomes invalid. Several significant associations between constitutive parameters and age have also been identified.\n</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 1","pages":"41 - 59"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-023-01257-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Constitutive relationships for osteonal microcracking in human cortical bone using statistical mechanics\",\"authors\":\"S. García-Vilana, D. Sánchez-Molina\",\"doi\":\"10.1007/s00161-023-01257-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The post-elastic mechanical behavior of cortical bone, which is represented by extensive microcracking once the elastic regime is exceeded, has been characterized by a nonlinear constitutive relationship for osteonal microcracking. The relationship/model is based on the formalism of Statistical Mechanics, allowing the degree of irreversibility to be calculated using the increase in entropy associated with the progression of microcracking. Specific tensile and bending tests were conducted to compare theoretical predictions of constitutive relationships to empirical curves. In addition, the tests were utilized to determine the model’s parameters, whose values were used to explicitly calculate the entropy increase. A large sample was used: 51 cortical bone coupons (dog-bone-shaped specimens) were extracted from the 4th ribs of numerous individuals and subjected to uniaxial tensile testing. Additionally, fifteen complete 4th ribs were used for bending tests. Displacement and strain fields were measured for both types of tests using digital image correlation or video recordings of the tests. All experimental specimen data were successfully fitted to the model, and all constitutive parameter values were found to be correlated with anthropometric variables. Explicit entropy calculations indicate that microcracking is minimal for low strain and, initially, stress is nearly proportional to strain. After a certain point, significant microcracking occurs, and the relationship between stress and strain becomes invalid. Several significant associations between constitutive parameters and age have also been identified.\\n</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"36 1\",\"pages\":\"41 - 59\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-023-01257-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-023-01257-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01257-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Constitutive relationships for osteonal microcracking in human cortical bone using statistical mechanics
The post-elastic mechanical behavior of cortical bone, which is represented by extensive microcracking once the elastic regime is exceeded, has been characterized by a nonlinear constitutive relationship for osteonal microcracking. The relationship/model is based on the formalism of Statistical Mechanics, allowing the degree of irreversibility to be calculated using the increase in entropy associated with the progression of microcracking. Specific tensile and bending tests were conducted to compare theoretical predictions of constitutive relationships to empirical curves. In addition, the tests were utilized to determine the model’s parameters, whose values were used to explicitly calculate the entropy increase. A large sample was used: 51 cortical bone coupons (dog-bone-shaped specimens) were extracted from the 4th ribs of numerous individuals and subjected to uniaxial tensile testing. Additionally, fifteen complete 4th ribs were used for bending tests. Displacement and strain fields were measured for both types of tests using digital image correlation or video recordings of the tests. All experimental specimen data were successfully fitted to the model, and all constitutive parameter values were found to be correlated with anthropometric variables. Explicit entropy calculations indicate that microcracking is minimal for low strain and, initially, stress is nearly proportional to strain. After a certain point, significant microcracking occurs, and the relationship between stress and strain becomes invalid. Several significant associations between constitutive parameters and age have also been identified.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.