{"title":"An analytical model for debonding of composite cantilever beams under point loads","authors":"Marcin Białas, Giuliano Aretusi","doi":"10.1007/s00161-024-01332-1","DOIUrl":null,"url":null,"abstract":"<p>The paper presents an analytical model to study the shear driven debonding of a composite cantilever beam subjected to a point load. The composite structure consists of two elastic beams connected by an interface layer, and the model uses cohesive zone models to simulate the degradation process at the joint. These cohesive zone models are characterized by non-continuous and linear softening in the relationship between shear stress and relative tangential displacement. The results are expressed using non-dimensional parameters, and the model yields quasi-static equilibrium paths that demonstrate snap-back responses in both force and displacement values. The significance of the research lies in its application to structural engineering, where composite materials are extensively used. The study emphasizes the critical role of the interface layer strength in maintaining the structural integrity of composites. The proposed model advances the understanding of debonding by introducing a constitutive relation for the interface that accounts for the step-wise change in mechanical properties. The governing equations for the cantilever beam are derived, considering the equilibrium of forces and moments, and the relative tangential displacement at the interface. The model delineates three stages of interface degradation: no relative slip, plastic deformation, and progressive debonding. The analytical solutions for each stage provide insights into the beam deflection, shear stress, and axial force distribution. This research contributes to the field by offering a more refined analytical approach to study debonding in composite beams, which is essential for improving the design and analysis of composite structures.\n</p>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"231 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00161-024-01332-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents an analytical model to study the shear driven debonding of a composite cantilever beam subjected to a point load. The composite structure consists of two elastic beams connected by an interface layer, and the model uses cohesive zone models to simulate the degradation process at the joint. These cohesive zone models are characterized by non-continuous and linear softening in the relationship between shear stress and relative tangential displacement. The results are expressed using non-dimensional parameters, and the model yields quasi-static equilibrium paths that demonstrate snap-back responses in both force and displacement values. The significance of the research lies in its application to structural engineering, where composite materials are extensively used. The study emphasizes the critical role of the interface layer strength in maintaining the structural integrity of composites. The proposed model advances the understanding of debonding by introducing a constitutive relation for the interface that accounts for the step-wise change in mechanical properties. The governing equations for the cantilever beam are derived, considering the equilibrium of forces and moments, and the relative tangential displacement at the interface. The model delineates three stages of interface degradation: no relative slip, plastic deformation, and progressive debonding. The analytical solutions for each stage provide insights into the beam deflection, shear stress, and axial force distribution. This research contributes to the field by offering a more refined analytical approach to study debonding in composite beams, which is essential for improving the design and analysis of composite structures.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.