基于注意机制的RU-BiLSTM情感分析的面向方面文本分类

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Scalable Computing-Practice and Experience Pub Date : 2023-09-10 DOI:10.12694/scpe.v24i3.2122
Sandeep Yelisetti, None Nellore Geethanjali
{"title":"基于注意机制的RU-BiLSTM情感分析的面向方面文本分类","authors":"Sandeep Yelisetti, None Nellore Geethanjali","doi":"10.12694/scpe.v24i3.2122","DOIUrl":null,"url":null,"abstract":"Sentiment analysis has gained increasing attention from an educational and social perspective with the huge expansion of user interactions due to the Web’s significant improvement. The connection between an opinion target’s polarity scores and other aspects of the content is defined by aspect-based sentiment analysis. Identifying aspects and determining their different polarities is quite complicated because they are frequently implicit. To overcome these difficulties, efficient hybrid methods are used in aspect-based text classification in sentiment analysis. The existing process evaluates the aspects of polarity by using a Convolutional neural network, and it does not work with Big data. In this work, aspect-based text classification and attention mechanisms are used to assist in filtering out irrelevant information and quickly locating the essential features in big data. Initially, the data is collected, and then the data is preprocessed by using Tokenization, Stop word removal, Stemming, and Lemmatization. After preprocessing, the features are vectorized and extracted using Bag-of-Words and TF-IDF. Then, the extracted features are given into word embeddings by GloVe and Word2vec. It uses Deep Recurrent based Bidirectional Long Short Term Memory (RUBiLSTM) for aspect-based sentiment analysis. The RU-Bi-LSTM method integrates aspect-based embeddings and an attention mechanism for text classification. The attention mechanism focuses on more crucial aspects and the bidirectional LSTM to maintain context in both ways. Finally, the binary and ternary classification outcomes are obtained using the final dense softmax output layer. The proposed RU-BiLSTM uses four reviews and two Twitter datasets. The results of the studies demonstrate the efficacy of the RU-BiLSTM model, which outperformed aspect-based classifications on lengthy reviews and short tweets in terms of evaluation.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"9 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect-based Text Classification for Sentimental Analysis using Attention mechanism with RU-BiLSTM\",\"authors\":\"Sandeep Yelisetti, None Nellore Geethanjali\",\"doi\":\"10.12694/scpe.v24i3.2122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis has gained increasing attention from an educational and social perspective with the huge expansion of user interactions due to the Web’s significant improvement. The connection between an opinion target’s polarity scores and other aspects of the content is defined by aspect-based sentiment analysis. Identifying aspects and determining their different polarities is quite complicated because they are frequently implicit. To overcome these difficulties, efficient hybrid methods are used in aspect-based text classification in sentiment analysis. The existing process evaluates the aspects of polarity by using a Convolutional neural network, and it does not work with Big data. In this work, aspect-based text classification and attention mechanisms are used to assist in filtering out irrelevant information and quickly locating the essential features in big data. Initially, the data is collected, and then the data is preprocessed by using Tokenization, Stop word removal, Stemming, and Lemmatization. After preprocessing, the features are vectorized and extracted using Bag-of-Words and TF-IDF. Then, the extracted features are given into word embeddings by GloVe and Word2vec. It uses Deep Recurrent based Bidirectional Long Short Term Memory (RUBiLSTM) for aspect-based sentiment analysis. The RU-Bi-LSTM method integrates aspect-based embeddings and an attention mechanism for text classification. The attention mechanism focuses on more crucial aspects and the bidirectional LSTM to maintain context in both ways. Finally, the binary and ternary classification outcomes are obtained using the final dense softmax output layer. The proposed RU-BiLSTM uses four reviews and two Twitter datasets. The results of the studies demonstrate the efficacy of the RU-BiLSTM model, which outperformed aspect-based classifications on lengthy reviews and short tweets in terms of evaluation.\",\"PeriodicalId\":43791,\"journal\":{\"name\":\"Scalable Computing-Practice and Experience\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Computing-Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12694/scpe.v24i3.2122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

随着网络的显著改进,用户交互的巨大扩展,情感分析从教育和社会的角度得到了越来越多的关注。意见目标的极性得分与内容的其他方面之间的联系是由基于方面的情感分析定义的。识别方面并确定它们的不同极性是相当复杂的,因为它们通常是隐含的。为了克服这些困难,情感分析中基于方面的文本分类采用了高效的混合方法。现有的方法是通过使用卷积神经网络来评估极性的各个方面,而且它不适用于大数据。在这项工作中,使用基于方面的文本分类和注意机制来帮助过滤掉不相关的信息,并快速定位大数据中的基本特征。首先收集数据,然后使用Tokenization、Stop word removal、词干化和词形化对数据进行预处理。预处理后,使用Bag-of-Words和TF-IDF对特征进行矢量化提取。然后,将提取的特征用GloVe和Word2vec进行词嵌入。它使用基于深度循环的双向长短期记忆(RUBiLSTM)进行基于方面的情感分析。RU-Bi-LSTM方法集成了基于方面的嵌入和文本分类的注意机制。注意机制关注更关键的方面,双向LSTM在两种方式下维持语境。最后,利用最终的密集softmax输出层得到二值和三值分类结果。提出的RU-BiLSTM使用四个评论和两个Twitter数据集。研究结果证明了RU-BiLSTM模型的有效性,在评估方面优于基于方面的分类,在长评论和短推文中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aspect-based Text Classification for Sentimental Analysis using Attention mechanism with RU-BiLSTM
Sentiment analysis has gained increasing attention from an educational and social perspective with the huge expansion of user interactions due to the Web’s significant improvement. The connection between an opinion target’s polarity scores and other aspects of the content is defined by aspect-based sentiment analysis. Identifying aspects and determining their different polarities is quite complicated because they are frequently implicit. To overcome these difficulties, efficient hybrid methods are used in aspect-based text classification in sentiment analysis. The existing process evaluates the aspects of polarity by using a Convolutional neural network, and it does not work with Big data. In this work, aspect-based text classification and attention mechanisms are used to assist in filtering out irrelevant information and quickly locating the essential features in big data. Initially, the data is collected, and then the data is preprocessed by using Tokenization, Stop word removal, Stemming, and Lemmatization. After preprocessing, the features are vectorized and extracted using Bag-of-Words and TF-IDF. Then, the extracted features are given into word embeddings by GloVe and Word2vec. It uses Deep Recurrent based Bidirectional Long Short Term Memory (RUBiLSTM) for aspect-based sentiment analysis. The RU-Bi-LSTM method integrates aspect-based embeddings and an attention mechanism for text classification. The attention mechanism focuses on more crucial aspects and the bidirectional LSTM to maintain context in both ways. Finally, the binary and ternary classification outcomes are obtained using the final dense softmax output layer. The proposed RU-BiLSTM uses four reviews and two Twitter datasets. The results of the studies demonstrate the efficacy of the RU-BiLSTM model, which outperformed aspect-based classifications on lengthy reviews and short tweets in terms of evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
期刊最新文献
A Deep LSTM-RNN Classification Method for Covid-19 Twitter Review Based on Sentiment Analysis Flexible English Learning Platform using Collaborative Cloud-Fog-Edge Networking Computer Malicious Code Signal Detection based on Big Data Technology Analyzing Spectator Emotions and Behaviors at Live Sporting Events using Computer Vision and Sentiment Analysis Techniques Spacecraft Test Data Integration Management Technology based on Big Data Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1