面向电子商务客户动态变化需求的时间窗口物联网车辆路径研究

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Scalable Computing-Practice and Experience Pub Date : 2023-09-10 DOI:10.12694/scpe.v24i3.2372
Xin Chen
{"title":"面向电子商务客户动态变化需求的时间窗口物联网车辆路径研究","authors":"Xin Chen","doi":"10.12694/scpe.v24i3.2372","DOIUrl":null,"url":null,"abstract":"The main dynamic truck routing problem also presents a significant difficulty in the logistics sector, which is an unavoidable development trend of the contemporary technological changing society. A dynamic vehicle routing problem with time window model is suggested by the study in order to establish an effective and low-energy dynamic response method. The fundamental concept is to disrupt the conventional strategy of static dynamic consumers responding in time slots by dividing the dynamic time window into a static time window with several time slice intervals. The study makes use of cutting-edge ideas including dynamic attitude, before-and-after time slicing, and continuous optimisation while proposing a new method for model solution to optimise dynamic vehicle route issues effectively and affordably. The study employs the Solomon optimisation dataset and runs simulation studies on the Java platform to confirm its efficacy. The experimental findings demonstrated that the optimisation technique employed in the study reduced the cost of travelling by 83.8 miles while also considerably increasing the average vehicle utilisation by 3.6%. Because driving distance cost and vehicle number cost are typically positively connected with dynamic attitude, the study employs solutions that can increase dynamic response efficiency and save money. As a result, their robustness is higher.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"21 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Window Oriented IoT Vehicle Pathway Study for the Dynamically Changing Needs of E-Commerce Customers\",\"authors\":\"Xin Chen\",\"doi\":\"10.12694/scpe.v24i3.2372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main dynamic truck routing problem also presents a significant difficulty in the logistics sector, which is an unavoidable development trend of the contemporary technological changing society. A dynamic vehicle routing problem with time window model is suggested by the study in order to establish an effective and low-energy dynamic response method. The fundamental concept is to disrupt the conventional strategy of static dynamic consumers responding in time slots by dividing the dynamic time window into a static time window with several time slice intervals. The study makes use of cutting-edge ideas including dynamic attitude, before-and-after time slicing, and continuous optimisation while proposing a new method for model solution to optimise dynamic vehicle route issues effectively and affordably. The study employs the Solomon optimisation dataset and runs simulation studies on the Java platform to confirm its efficacy. The experimental findings demonstrated that the optimisation technique employed in the study reduced the cost of travelling by 83.8 miles while also considerably increasing the average vehicle utilisation by 3.6%. Because driving distance cost and vehicle number cost are typically positively connected with dynamic attitude, the study employs solutions that can increase dynamic response efficiency and save money. As a result, their robustness is higher.\",\"PeriodicalId\":43791,\"journal\":{\"name\":\"Scalable Computing-Practice and Experience\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Computing-Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12694/scpe.v24i3.2372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

主要的动态卡车路线问题也是物流领域的一个重大难题,是当今技术变革社会不可避免的发展趋势。为了建立一种有效的、低耗能的动态响应方法,提出了一种带时间窗模型的动态车辆路径问题。其基本概念是通过将动态时间窗口划分为具有多个时间片间隔的静态时间窗口来打破静态动态消费者在时隙响应的传统策略。该研究利用动态姿态、前后时间切片、连续优化等前沿思想,提出了一种新的模型求解方法,有效且经济地优化动态车辆路径问题。该研究采用了Solomon优化数据集,并在Java平台上进行了模拟研究,以证实其有效性。实验结果表明,研究中采用的优化技术减少了83.8英里的旅行成本,同时也大大提高了3.6%的平均车辆利用率。由于行驶距离成本和车辆数量成本与动态态度呈正相关,本研究采用了既能提高动态响应效率又能节省资金的解决方案。因此,它们的稳健性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time Window Oriented IoT Vehicle Pathway Study for the Dynamically Changing Needs of E-Commerce Customers
The main dynamic truck routing problem also presents a significant difficulty in the logistics sector, which is an unavoidable development trend of the contemporary technological changing society. A dynamic vehicle routing problem with time window model is suggested by the study in order to establish an effective and low-energy dynamic response method. The fundamental concept is to disrupt the conventional strategy of static dynamic consumers responding in time slots by dividing the dynamic time window into a static time window with several time slice intervals. The study makes use of cutting-edge ideas including dynamic attitude, before-and-after time slicing, and continuous optimisation while proposing a new method for model solution to optimise dynamic vehicle route issues effectively and affordably. The study employs the Solomon optimisation dataset and runs simulation studies on the Java platform to confirm its efficacy. The experimental findings demonstrated that the optimisation technique employed in the study reduced the cost of travelling by 83.8 miles while also considerably increasing the average vehicle utilisation by 3.6%. Because driving distance cost and vehicle number cost are typically positively connected with dynamic attitude, the study employs solutions that can increase dynamic response efficiency and save money. As a result, their robustness is higher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
期刊最新文献
A Deep LSTM-RNN Classification Method for Covid-19 Twitter Review Based on Sentiment Analysis Flexible English Learning Platform using Collaborative Cloud-Fog-Edge Networking Computer Malicious Code Signal Detection based on Big Data Technology Analyzing Spectator Emotions and Behaviors at Live Sporting Events using Computer Vision and Sentiment Analysis Techniques Spacecraft Test Data Integration Management Technology based on Big Data Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1