{"title":"肿瘤的机械约束引导胶质母细胞瘤肿瘤干细胞涌现的空间模式","authors":"Ngoc Luu , Shuhao Zhang , Raymond H.W. Lam , Weiqiang Chen","doi":"10.1016/j.mbm.2023.100027","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical constraints in the overcrowding glioblastoma (GBM) microenvironment have been implicated in the regulation of tumor heterogeneity and disease progression. Especially, such mechanical cues can alter cellular DNA transcription and give rise to a subpopulation of tumor cells called cancer stem cells (CSCs). These CSCs with stem-like properties are critical drivers of tumorigenesis, metastasis, and treatment resistance. Yet, the biophysical and molecular machinery underlying the emergence of CSCs in tumor remained unexplored. This work employed a two-dimensional micropatterned multicellular model to examine the impact of mechanical constraints arisen from geometric confinement on the emergence and spatial patterning of CSCs in GBM tumor. Our study identified distinct spatial distributions of GBM CSCs in different geometric patterns, where CSCs mostly emerged in the peripheral regions. The spatial pattern of CSCs was found to correspond to the gradients of mechanical stresses resulted from the interplay between the cell-ECM and cell–cell interactions within the confined environment. Further mechanistic study highlighted a Piezo1-RhoA-focal adhesion signaling axis in regulating GBM cell mechanosensing and the subsequent CSC phenotypic transformation. These findings provide new insights into the biophysical origin of the unique spatial pattern of CSCs in GBM tumor and offer potential avenues for targeted therapeutic interventions.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100027"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294990702300027X/pdfft?md5=8cb1fdcefd8d046399822b671fd596bc&pid=1-s2.0-S294990702300027X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanical constraints in tumor guide emergent spatial patterns of glioblastoma cancer stem cells\",\"authors\":\"Ngoc Luu , Shuhao Zhang , Raymond H.W. Lam , Weiqiang Chen\",\"doi\":\"10.1016/j.mbm.2023.100027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical constraints in the overcrowding glioblastoma (GBM) microenvironment have been implicated in the regulation of tumor heterogeneity and disease progression. Especially, such mechanical cues can alter cellular DNA transcription and give rise to a subpopulation of tumor cells called cancer stem cells (CSCs). These CSCs with stem-like properties are critical drivers of tumorigenesis, metastasis, and treatment resistance. Yet, the biophysical and molecular machinery underlying the emergence of CSCs in tumor remained unexplored. This work employed a two-dimensional micropatterned multicellular model to examine the impact of mechanical constraints arisen from geometric confinement on the emergence and spatial patterning of CSCs in GBM tumor. Our study identified distinct spatial distributions of GBM CSCs in different geometric patterns, where CSCs mostly emerged in the peripheral regions. The spatial pattern of CSCs was found to correspond to the gradients of mechanical stresses resulted from the interplay between the cell-ECM and cell–cell interactions within the confined environment. Further mechanistic study highlighted a Piezo1-RhoA-focal adhesion signaling axis in regulating GBM cell mechanosensing and the subsequent CSC phenotypic transformation. These findings provide new insights into the biophysical origin of the unique spatial pattern of CSCs in GBM tumor and offer potential avenues for targeted therapeutic interventions.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":\"2 1\",\"pages\":\"Article 100027\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294990702300027X/pdfft?md5=8cb1fdcefd8d046399822b671fd596bc&pid=1-s2.0-S294990702300027X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294990702300027X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294990702300027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical constraints in tumor guide emergent spatial patterns of glioblastoma cancer stem cells
The mechanical constraints in the overcrowding glioblastoma (GBM) microenvironment have been implicated in the regulation of tumor heterogeneity and disease progression. Especially, such mechanical cues can alter cellular DNA transcription and give rise to a subpopulation of tumor cells called cancer stem cells (CSCs). These CSCs with stem-like properties are critical drivers of tumorigenesis, metastasis, and treatment resistance. Yet, the biophysical and molecular machinery underlying the emergence of CSCs in tumor remained unexplored. This work employed a two-dimensional micropatterned multicellular model to examine the impact of mechanical constraints arisen from geometric confinement on the emergence and spatial patterning of CSCs in GBM tumor. Our study identified distinct spatial distributions of GBM CSCs in different geometric patterns, where CSCs mostly emerged in the peripheral regions. The spatial pattern of CSCs was found to correspond to the gradients of mechanical stresses resulted from the interplay between the cell-ECM and cell–cell interactions within the confined environment. Further mechanistic study highlighted a Piezo1-RhoA-focal adhesion signaling axis in regulating GBM cell mechanosensing and the subsequent CSC phenotypic transformation. These findings provide new insights into the biophysical origin of the unique spatial pattern of CSCs in GBM tumor and offer potential avenues for targeted therapeutic interventions.