José Milton Neves de Souza Júnior, Luís Felipe Ferreira de Mendonça, Heverton da Silva Costa, Juliana Costi, Rodrigo Nogueira Vasconcelos, André Telles da Cunha Lima, Sidnei João Siqueira Sant’anna, José Marques Lopes, Milton José Porsani, de José Vivas Garica Miranda, Carlos Alessandre Domingos Lentini
{"title":"全球海洋溢油事件SAR后向散射(Sentinel-1)地球化学分析","authors":"José Milton Neves de Souza Júnior, Luís Felipe Ferreira de Mendonça, Heverton da Silva Costa, Juliana Costi, Rodrigo Nogueira Vasconcelos, André Telles da Cunha Lima, Sidnei João Siqueira Sant’anna, José Marques Lopes, Milton José Porsani, de José Vivas Garica Miranda, Carlos Alessandre Domingos Lentini","doi":"10.1080/22797254.2023.2256959","DOIUrl":null,"url":null,"abstract":"The oil spill is one of the most impactful sources of marine pollution on the ocean surface, detected by the SAR sensors as dark areas, regions with low backscatter values. Due to the complex mixture of hydrophobic hydrocarbons, mineral oil spills change the water surface tension dampening the capillary gravity waves and provoking a specular reflection. In this work, we associated the geochemical oil characteristics, such as density, viscosity, API, and molecular composition with the backscatter values for each oil spill case. We identified the relationship between the oil weathering processes, with the changes in the backscattering values of ocean oil spills. The method designed zonal sections over the oil spills detected in the SAR images, to extract the backscatter values for each pixel along the section. The lowest backscatter average was observed by the heavy oil spill in the Corsica Island study (−29,99 dB). The highest level of weathering had the highest backscatter averages. Damping rates ranged between 4,12 and 7,07 dB and the backscatter values may be related to low oil layer thickness. Furthermore, low wind speeds may have reduced the contrast between water and oil spills, resulting in low damping ratios in all events.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"19 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochemical analysis of SAR backscattering (Sentinel-1) on global ocean oil spill cases\",\"authors\":\"José Milton Neves de Souza Júnior, Luís Felipe Ferreira de Mendonça, Heverton da Silva Costa, Juliana Costi, Rodrigo Nogueira Vasconcelos, André Telles da Cunha Lima, Sidnei João Siqueira Sant’anna, José Marques Lopes, Milton José Porsani, de José Vivas Garica Miranda, Carlos Alessandre Domingos Lentini\",\"doi\":\"10.1080/22797254.2023.2256959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oil spill is one of the most impactful sources of marine pollution on the ocean surface, detected by the SAR sensors as dark areas, regions with low backscatter values. Due to the complex mixture of hydrophobic hydrocarbons, mineral oil spills change the water surface tension dampening the capillary gravity waves and provoking a specular reflection. In this work, we associated the geochemical oil characteristics, such as density, viscosity, API, and molecular composition with the backscatter values for each oil spill case. We identified the relationship between the oil weathering processes, with the changes in the backscattering values of ocean oil spills. The method designed zonal sections over the oil spills detected in the SAR images, to extract the backscatter values for each pixel along the section. The lowest backscatter average was observed by the heavy oil spill in the Corsica Island study (−29,99 dB). The highest level of weathering had the highest backscatter averages. Damping rates ranged between 4,12 and 7,07 dB and the backscatter values may be related to low oil layer thickness. Furthermore, low wind speeds may have reduced the contrast between water and oil spills, resulting in low damping ratios in all events.\",\"PeriodicalId\":49077,\"journal\":{\"name\":\"European Journal of Remote Sensing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/22797254.2023.2256959\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22797254.2023.2256959","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Geochemical analysis of SAR backscattering (Sentinel-1) on global ocean oil spill cases
The oil spill is one of the most impactful sources of marine pollution on the ocean surface, detected by the SAR sensors as dark areas, regions with low backscatter values. Due to the complex mixture of hydrophobic hydrocarbons, mineral oil spills change the water surface tension dampening the capillary gravity waves and provoking a specular reflection. In this work, we associated the geochemical oil characteristics, such as density, viscosity, API, and molecular composition with the backscatter values for each oil spill case. We identified the relationship between the oil weathering processes, with the changes in the backscattering values of ocean oil spills. The method designed zonal sections over the oil spills detected in the SAR images, to extract the backscatter values for each pixel along the section. The lowest backscatter average was observed by the heavy oil spill in the Corsica Island study (−29,99 dB). The highest level of weathering had the highest backscatter averages. Damping rates ranged between 4,12 and 7,07 dB and the backscatter values may be related to low oil layer thickness. Furthermore, low wind speeds may have reduced the contrast between water and oil spills, resulting in low damping ratios in all events.
期刊介绍:
European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include:
-land use/land cover
-geology, earth and geoscience
-agriculture and forestry
-geography and landscape
-ecology and environmental science
-support to land management
-hydrology and water resources
-atmosphere and meteorology
-oceanography
-new sensor systems, missions and software/algorithms
-pre processing/calibration
-classifications
-time series/change analysis
-data integration/merging/fusion
-image processing and analysis
-modelling
European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.