ELVA-1公司高温等离子体微波诊断的最新进展

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Journal of Instrumentation Pub Date : 2023-10-01 DOI:10.1088/1748-0221/18/10/c10025
D. Korneev, S. Petrov, S. Markov
{"title":"ELVA-1公司高温等离子体微波诊断的最新进展","authors":"D. Korneev, S. Petrov, S. Markov","doi":"10.1088/1748-0221/18/10/c10025","DOIUrl":null,"url":null,"abstract":"Abstract For nearly 30 years, we have been designing and supplying instruments for microwave diagnostics of high temperature plasma. This report provides a description of the mm-wave components we utilize to make diagnostics within the frequency range of 26–330 GHz. While most of these components are standard and readily available on the market, we have also developed a few specific devices that simplify the architecture of our instruments. The article includes descriptions of these devices: Backward Wave Oscillators (BWO), Impact Ionization Avalanche Transit-Time diode (IMPATT) sources, IMPATT Active Frequency Multipliers (AFM), Noise Sources, and Electronically Controlled Attenuators. Furthermore, we offer an overview of the microwave plasma diagnostics we have supplied, including ECE radiometers operating at 50–220 GHz, as well as heterodyne interferometers operating at fixed frequency 94 GHz, 140 GHz, or 300 GHz. We also discuss methods employed to ensure measurement stability and present the achieved results. The advent of the new era of modern Monolithic Microwave Integrated Circuit (MMIC) based devices has brought forth exciting possibilities. As an example, we discuss the upgrade of the low noise receiver for the Collective Thomson Scattering (CTS) diagnostic at Wendelstein 7-X, which enables ion temperature measurements in the plasma core [1]. Lastly, we provide a list of MMIC-based devices that are currently available and have garnered the attention of the plasma diagnostics community.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"15 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The latest developments of microwave diagnostics for high temperature plasma in ELVA-1 company\",\"authors\":\"D. Korneev, S. Petrov, S. Markov\",\"doi\":\"10.1088/1748-0221/18/10/c10025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For nearly 30 years, we have been designing and supplying instruments for microwave diagnostics of high temperature plasma. This report provides a description of the mm-wave components we utilize to make diagnostics within the frequency range of 26–330 GHz. While most of these components are standard and readily available on the market, we have also developed a few specific devices that simplify the architecture of our instruments. The article includes descriptions of these devices: Backward Wave Oscillators (BWO), Impact Ionization Avalanche Transit-Time diode (IMPATT) sources, IMPATT Active Frequency Multipliers (AFM), Noise Sources, and Electronically Controlled Attenuators. Furthermore, we offer an overview of the microwave plasma diagnostics we have supplied, including ECE radiometers operating at 50–220 GHz, as well as heterodyne interferometers operating at fixed frequency 94 GHz, 140 GHz, or 300 GHz. We also discuss methods employed to ensure measurement stability and present the achieved results. The advent of the new era of modern Monolithic Microwave Integrated Circuit (MMIC) based devices has brought forth exciting possibilities. As an example, we discuss the upgrade of the low noise receiver for the Collective Thomson Scattering (CTS) diagnostic at Wendelstein 7-X, which enables ion temperature measurements in the plasma core [1]. Lastly, we provide a list of MMIC-based devices that are currently available and have garnered the attention of the plasma diagnostics community.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/10/c10025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/10/c10025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

近30年来,我们一直致力于设计和提供高温等离子体微波诊断仪器。本报告提供了我们用于在26-330 GHz频率范围内进行诊断的毫米波分量的描述。虽然大多数这些组件都是标准的,并且在市场上随时可用,但我们还开发了一些特定的设备,以简化我们仪器的架构。本文包括对这些器件的描述:后向波振荡器(BWO),冲击电离雪崩传输时间二极管(IMPATT)源,IMPATT有源倍频器(AFM),噪声源和电子控制衰减器。此外,我们还概述了我们提供的微波等离子体诊断,包括工作在50-220 GHz的ECE辐射计,以及工作在固定频率94 GHz, 140 GHz或300 GHz的外差干涉仪。我们还讨论了确保测量稳定性的方法,并给出了取得的结果。现代单片微波集成电路(MMIC)器件新时代的到来带来了令人兴奋的可能性。作为一个例子,我们讨论了Wendelstein 7-X上用于集体汤姆森散射(CTS)诊断的低噪声接收器的升级,这使得等离子体核心中的离子温度测量成为可能[1]。最后,我们提供了一个基于mmic的设备列表,这些设备目前是可用的,并且已经引起了血浆诊断界的注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The latest developments of microwave diagnostics for high temperature plasma in ELVA-1 company
Abstract For nearly 30 years, we have been designing and supplying instruments for microwave diagnostics of high temperature plasma. This report provides a description of the mm-wave components we utilize to make diagnostics within the frequency range of 26–330 GHz. While most of these components are standard and readily available on the market, we have also developed a few specific devices that simplify the architecture of our instruments. The article includes descriptions of these devices: Backward Wave Oscillators (BWO), Impact Ionization Avalanche Transit-Time diode (IMPATT) sources, IMPATT Active Frequency Multipliers (AFM), Noise Sources, and Electronically Controlled Attenuators. Furthermore, we offer an overview of the microwave plasma diagnostics we have supplied, including ECE radiometers operating at 50–220 GHz, as well as heterodyne interferometers operating at fixed frequency 94 GHz, 140 GHz, or 300 GHz. We also discuss methods employed to ensure measurement stability and present the achieved results. The advent of the new era of modern Monolithic Microwave Integrated Circuit (MMIC) based devices has brought forth exciting possibilities. As an example, we discuss the upgrade of the low noise receiver for the Collective Thomson Scattering (CTS) diagnostic at Wendelstein 7-X, which enables ion temperature measurements in the plasma core [1]. Lastly, we provide a list of MMIC-based devices that are currently available and have garnered the attention of the plasma diagnostics community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Instrumentation
Journal of Instrumentation 工程技术-仪器仪表
CiteScore
2.40
自引率
15.40%
发文量
827
审稿时长
7.5 months
期刊介绍: Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include. -Accelerators: concepts, modelling, simulations and sources- Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons- Detector physics: concepts, processes, methods, modelling and simulations- Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics- Instrumentation and methods for plasma research- Methods and apparatus for astronomy and astrophysics- Detectors, methods and apparatus for biomedical applications, life sciences and material research- Instrumentation and techniques for medical imaging, diagnostics and therapy- Instrumentation and techniques for dosimetry, monitoring and radiation damage- Detectors, instrumentation and methods for non-destructive tests (NDT)- Detector readout concepts, electronics and data acquisition methods- Algorithms, software and data reduction methods- Materials and associated technologies, etc.- Engineering and technical issues. JINST also includes a section dedicated to technical reports and instrumentation theses.
期刊最新文献
High-speed readout system of X-ray CMOS image sensor for time domain astronomy Recent advances in combined Positron Emission Tomography and Magnetic Resonance Imaging Characterization of organic glass scintillator bars and their potential for a hybrid neutron/gamma ray imaging system for proton radiotherapy range verification Data analysis methods and applications of the eddy current diagnostic system in the Keda Torus eXperiment device Tracking a moving point source using triple gamma imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1