混凝去除微塑料:优化反应条件和机理综述

Muhammad Tariq Khan, Mushtaq Ahmad, Md Faysal Hossain, Asim Nawab, Iqbal Ahmad, Khalil Ahmad, Sirima Panyametheekul
{"title":"混凝去除微塑料:优化反应条件和机理综述","authors":"Muhammad Tariq Khan, Mushtaq Ahmad, Md Faysal Hossain, Asim Nawab, Iqbal Ahmad, Khalil Ahmad, Sirima Panyametheekul","doi":"10.20517/wecn.2023.39","DOIUrl":null,"url":null,"abstract":"Coagulation is a widely employed technique for removing suspended particles from water and wastewater, and recently, it has gotten attention as a popular method for the removal of microplastics (MPs). Studies on coagulation-based removal of MPs are still in their infancy, and few findings are available about this treatment approach, its mechanism, and removal efficiency. Given these gaps, this study was designed to comprehensively investigate recent advances in the removal of MPs via coagulation. The influence of various experimental factors such as coagulant type, dose of the coagulant, pH of the solution, and shape of the MPs are critically reviewed. The study findings showed that optimizing environmental conditions during the coagulation process is crucial for improving the removal of MPs and reducing energy costs. The study findings showed that the coagulation efficiency of MPs depends on optimal reaction conditions, which may vary depending on the type and concentration of MPs and the characteristics of the water or wastewater being treated. Optimizing these reaction conditions is, therefore, critical to achieving maximum removal efficiency. More extensive research is required to reveal the mechanisms of coagulation in controlling floc density and removing pollutants from effluent. Consequently, the current review aims to highlight the gaps and challenges associated with coagulation techniques for the removal of MPs during wastewater treatment. Current advancements in the synthesis and chemical modification of bio-based coagulants and their coagulation performance for the removal of MPs could constitute a paradigm shift in ecosystem protection and sustainability. The use of eco-friendly coagulants and combining coagulation with other techniques are suggested to increase the efficacy and viability of this method. This review will provide significant insights for field researchers, guiding their future investigations and contributing to the advancement of knowledge.","PeriodicalId":497971,"journal":{"name":"Water Emerging Contaminants & Nanoplastics","volume":"5 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastic removal by coagulation: a review of optimizing the reaction conditions and mechanisms\",\"authors\":\"Muhammad Tariq Khan, Mushtaq Ahmad, Md Faysal Hossain, Asim Nawab, Iqbal Ahmad, Khalil Ahmad, Sirima Panyametheekul\",\"doi\":\"10.20517/wecn.2023.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coagulation is a widely employed technique for removing suspended particles from water and wastewater, and recently, it has gotten attention as a popular method for the removal of microplastics (MPs). Studies on coagulation-based removal of MPs are still in their infancy, and few findings are available about this treatment approach, its mechanism, and removal efficiency. Given these gaps, this study was designed to comprehensively investigate recent advances in the removal of MPs via coagulation. The influence of various experimental factors such as coagulant type, dose of the coagulant, pH of the solution, and shape of the MPs are critically reviewed. The study findings showed that optimizing environmental conditions during the coagulation process is crucial for improving the removal of MPs and reducing energy costs. The study findings showed that the coagulation efficiency of MPs depends on optimal reaction conditions, which may vary depending on the type and concentration of MPs and the characteristics of the water or wastewater being treated. Optimizing these reaction conditions is, therefore, critical to achieving maximum removal efficiency. More extensive research is required to reveal the mechanisms of coagulation in controlling floc density and removing pollutants from effluent. Consequently, the current review aims to highlight the gaps and challenges associated with coagulation techniques for the removal of MPs during wastewater treatment. Current advancements in the synthesis and chemical modification of bio-based coagulants and their coagulation performance for the removal of MPs could constitute a paradigm shift in ecosystem protection and sustainability. The use of eco-friendly coagulants and combining coagulation with other techniques are suggested to increase the efficacy and viability of this method. This review will provide significant insights for field researchers, guiding their future investigations and contributing to the advancement of knowledge.\",\"PeriodicalId\":497971,\"journal\":{\"name\":\"Water Emerging Contaminants & Nanoplastics\",\"volume\":\"5 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Emerging Contaminants & Nanoplastics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/wecn.2023.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Emerging Contaminants & Nanoplastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/wecn.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混凝法是一种广泛应用于去除水和废水中悬浮颗粒的技术,近年来作为去除微塑料的一种流行方法受到了广泛的关注。基于凝固去除MPs的研究还处于起步阶段,关于这种治疗方法、机制和去除效率的研究很少。鉴于这些空白,本研究旨在全面研究通过凝血去除MPs的最新进展。各种实验因素的影响,如混凝剂的类型,混凝剂的剂量,溶液的pH值,和形状的MPs严格审查。研究结果表明,优化混凝过程中的环境条件对于提高MPs的去除率和降低能源成本至关重要。研究结果表明,MPs的混凝效率取决于最佳反应条件,根据MPs的类型和浓度以及所处理的水或废水的特性,最佳反应条件可能会有所不同。因此,优化这些反应条件对于实现最大的去除效率至关重要。需要更广泛的研究来揭示混凝在控制絮凝体密度和去除出水污染物方面的机制。因此,目前的审查旨在强调与废水处理过程中去除MPs的混凝技术相关的差距和挑战。目前生物基混凝剂的合成和化学改性及其去除MPs的混凝性能的进展可能构成生态系统保护和可持续性的范式转变。建议采用生态友好型混凝剂,并与其他混凝技术相结合,以提高该方法的有效性和可行性。本文的综述将为现场研究人员提供重要的见解,指导他们未来的研究,并有助于知识的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microplastic removal by coagulation: a review of optimizing the reaction conditions and mechanisms
Coagulation is a widely employed technique for removing suspended particles from water and wastewater, and recently, it has gotten attention as a popular method for the removal of microplastics (MPs). Studies on coagulation-based removal of MPs are still in their infancy, and few findings are available about this treatment approach, its mechanism, and removal efficiency. Given these gaps, this study was designed to comprehensively investigate recent advances in the removal of MPs via coagulation. The influence of various experimental factors such as coagulant type, dose of the coagulant, pH of the solution, and shape of the MPs are critically reviewed. The study findings showed that optimizing environmental conditions during the coagulation process is crucial for improving the removal of MPs and reducing energy costs. The study findings showed that the coagulation efficiency of MPs depends on optimal reaction conditions, which may vary depending on the type and concentration of MPs and the characteristics of the water or wastewater being treated. Optimizing these reaction conditions is, therefore, critical to achieving maximum removal efficiency. More extensive research is required to reveal the mechanisms of coagulation in controlling floc density and removing pollutants from effluent. Consequently, the current review aims to highlight the gaps and challenges associated with coagulation techniques for the removal of MPs during wastewater treatment. Current advancements in the synthesis and chemical modification of bio-based coagulants and their coagulation performance for the removal of MPs could constitute a paradigm shift in ecosystem protection and sustainability. The use of eco-friendly coagulants and combining coagulation with other techniques are suggested to increase the efficacy and viability of this method. This review will provide significant insights for field researchers, guiding their future investigations and contributing to the advancement of knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification, removal of microplastics and surfactants from laundry wastewater using electrocoagulation method Microplastic removal by coagulation: a review of optimizing the reaction conditions and mechanisms Application of polyoxometalates and their composites for the degradation of antibiotics in water medium Microplastics in the cryosphere - a potential time bomb? Lipid and protein oxidation in Cyprinus carpio muscle by environmentally relevant concentrations of glibenclamide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1