利用混合方法在电子商务产品推荐系统中克服冷启动问题

Budi Santosa
{"title":"利用混合方法在电子商务产品推荐系统中克服冷启动问题","authors":"Budi Santosa","doi":"10.35671/telematika.v16i1.2080","DOIUrl":null,"url":null,"abstract":"The large number of users and the items offered in e-commerce make it difficult for buyers to choose the right items and sellers to offer their items to the right buyers. To overcome this problem, a system that can offer and recommend goods automatically, namely a recommendation system is needed. One of the most popular methods used to create a recommendation system is collaborative filtering, the recommendations are created based on similarities in user behavior. Unfortunately, this method has a weakness, namely cold start, where the recommendations will be inaccurate on data that has a lot of new users and items due to minimal historical data regarding user behavior. This problem will be tried to be solved in this study using a hybrid method, where this method combines more than 1 method to create a list of recommendations so that it will cover the shortcomings of each method. This study uses Amazon's e-commerce product and transaction data. The use of the hybrid method in this study can overcome the cold start problem by using switching and mixed methods, by not using the collaborative filtering model on new user recommendations or users who have little interaction. New users will receive recommendations based on the combination of popularity-based and content-based filtering models. This can be seen from the Mean Absolute Error (MAE) value of the model, where the MAE value for the data with a minimum user has at least 3 times rating is 0.566883, for the minimum 7 times, the MAE value is smaller, 0.487553.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Hybrid Methods in Making E-commerce Product Recommendation Systems to Overcome Cold Start Problems\",\"authors\":\"Budi Santosa\",\"doi\":\"10.35671/telematika.v16i1.2080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large number of users and the items offered in e-commerce make it difficult for buyers to choose the right items and sellers to offer their items to the right buyers. To overcome this problem, a system that can offer and recommend goods automatically, namely a recommendation system is needed. One of the most popular methods used to create a recommendation system is collaborative filtering, the recommendations are created based on similarities in user behavior. Unfortunately, this method has a weakness, namely cold start, where the recommendations will be inaccurate on data that has a lot of new users and items due to minimal historical data regarding user behavior. This problem will be tried to be solved in this study using a hybrid method, where this method combines more than 1 method to create a list of recommendations so that it will cover the shortcomings of each method. This study uses Amazon's e-commerce product and transaction data. The use of the hybrid method in this study can overcome the cold start problem by using switching and mixed methods, by not using the collaborative filtering model on new user recommendations or users who have little interaction. New users will receive recommendations based on the combination of popularity-based and content-based filtering models. This can be seen from the Mean Absolute Error (MAE) value of the model, where the MAE value for the data with a minimum user has at least 3 times rating is 0.566883, for the minimum 7 times, the MAE value is smaller, 0.487553.\",\"PeriodicalId\":31716,\"journal\":{\"name\":\"Telematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35671/telematika.v16i1.2080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35671/telematika.v16i1.2080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子商务中大量的用户和提供的商品给买家选择合适的商品和卖家向合适的买家提供商品带来了困难。为了克服这一问题,需要一个能够自动提供和推荐商品的系统,即推荐系统。创建推荐系统最常用的方法之一是协同过滤,基于用户行为的相似性创建推荐。不幸的是,这种方法有一个弱点,即冷启动,由于关于用户行为的历史数据很少,因此在具有大量新用户和项目的数据上,推荐将是不准确的。这个问题将在本研究中尝试使用混合方法来解决,这种方法结合了1种以上的方法来创建一个建议列表,以便它将涵盖每种方法的缺点。本研究使用了亚马逊的电子商务产品和交易数据。本研究采用混合方法克服了冷启动问题,采用切换和混合方法,对新用户推荐或交互较少的用户不使用协同过滤模型。新用户将收到基于人气和基于内容的过滤模型组合的推荐。这可以从模型的平均绝对误差(Mean Absolute Error, MAE)值中看出,其中对于最少用户拥有至少3次评级的数据,MAE值为0.566883,对于最少7次评级的数据,MAE值更小,为0.487553。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Hybrid Methods in Making E-commerce Product Recommendation Systems to Overcome Cold Start Problems
The large number of users and the items offered in e-commerce make it difficult for buyers to choose the right items and sellers to offer their items to the right buyers. To overcome this problem, a system that can offer and recommend goods automatically, namely a recommendation system is needed. One of the most popular methods used to create a recommendation system is collaborative filtering, the recommendations are created based on similarities in user behavior. Unfortunately, this method has a weakness, namely cold start, where the recommendations will be inaccurate on data that has a lot of new users and items due to minimal historical data regarding user behavior. This problem will be tried to be solved in this study using a hybrid method, where this method combines more than 1 method to create a list of recommendations so that it will cover the shortcomings of each method. This study uses Amazon's e-commerce product and transaction data. The use of the hybrid method in this study can overcome the cold start problem by using switching and mixed methods, by not using the collaborative filtering model on new user recommendations or users who have little interaction. New users will receive recommendations based on the combination of popularity-based and content-based filtering models. This can be seen from the Mean Absolute Error (MAE) value of the model, where the MAE value for the data with a minimum user has at least 3 times rating is 0.566883, for the minimum 7 times, the MAE value is smaller, 0.487553.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1