{"title":"苯酚与1-甲基环戊烯催化环烷基化工艺的优化","authors":"F.I. Gasimova, R.P. Jafarov, Z.Z. Aghamaliyev, O.M. Farzalizade, G.N. Hamzaeva","doi":"10.32758/2782-3040-2023-0-5-38-45","DOIUrl":null,"url":null,"abstract":"The work presents the results of a study of the cycloalkylation reaction of phenol with 1-methylcyclopentene and the calculation of a regression mathematical model of the process. KN-30 was used as a process catalyst. The effect of input factors (temperature, time, molar ratios of starting components and amount of catalyst) on the yield and selectivity of para-(1-methylcyclopentyl) phenol was studied. As a result, the optimal conditions for obtaining para-(1-methylcyclopentyl) phenol with high yield and selectivity were found. When studying the reaction of cycloalkylation of phenol with 1-methylcyclopentene in the presence of a KH-30 catalyst, it was found that a high yield of the target product of 71.2% (for taken phenol), a selectivity of -92.8% (for the target product) was obtained under the following conditions: temperature - 110 ° C, duration reactions - 5 hours, the molar ratio of phenol to 1-methylcyclopentene 1:1, the amount of catalyst 10% based on the taken phenol. The chemical structure of the synthesized para-(1-methylcyclopentyl) phenol was confirmed by IR, 1Н and 13С NMR methods and its physicochemical parameters were determined. A regression mathematical model of the cycloalkylation process was calculated and the parameters of the optimal mode were found. With the calculated optimal values of the input variables found, a control experiment was set up, which made it possible to find the yield values of the target product Y1=78%, which indicates the acceptability of the developed regression model.","PeriodicalId":487508,"journal":{"name":"Мир нефтепродуктов","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the catalytic cycloalkylation process of phenol with 1-methylcyclopentene\",\"authors\":\"F.I. Gasimova, R.P. Jafarov, Z.Z. Aghamaliyev, O.M. Farzalizade, G.N. Hamzaeva\",\"doi\":\"10.32758/2782-3040-2023-0-5-38-45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presents the results of a study of the cycloalkylation reaction of phenol with 1-methylcyclopentene and the calculation of a regression mathematical model of the process. KN-30 was used as a process catalyst. The effect of input factors (temperature, time, molar ratios of starting components and amount of catalyst) on the yield and selectivity of para-(1-methylcyclopentyl) phenol was studied. As a result, the optimal conditions for obtaining para-(1-methylcyclopentyl) phenol with high yield and selectivity were found. When studying the reaction of cycloalkylation of phenol with 1-methylcyclopentene in the presence of a KH-30 catalyst, it was found that a high yield of the target product of 71.2% (for taken phenol), a selectivity of -92.8% (for the target product) was obtained under the following conditions: temperature - 110 ° C, duration reactions - 5 hours, the molar ratio of phenol to 1-methylcyclopentene 1:1, the amount of catalyst 10% based on the taken phenol. The chemical structure of the synthesized para-(1-methylcyclopentyl) phenol was confirmed by IR, 1Н and 13С NMR methods and its physicochemical parameters were determined. A regression mathematical model of the cycloalkylation process was calculated and the parameters of the optimal mode were found. With the calculated optimal values of the input variables found, a control experiment was set up, which made it possible to find the yield values of the target product Y1=78%, which indicates the acceptability of the developed regression model.\",\"PeriodicalId\":487508,\"journal\":{\"name\":\"Мир нефтепродуктов\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Мир нефтепродуктов\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32758/2782-3040-2023-0-5-38-45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Мир нефтепродуктов","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32758/2782-3040-2023-0-5-38-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of the catalytic cycloalkylation process of phenol with 1-methylcyclopentene
The work presents the results of a study of the cycloalkylation reaction of phenol with 1-methylcyclopentene and the calculation of a regression mathematical model of the process. KN-30 was used as a process catalyst. The effect of input factors (temperature, time, molar ratios of starting components and amount of catalyst) on the yield and selectivity of para-(1-methylcyclopentyl) phenol was studied. As a result, the optimal conditions for obtaining para-(1-methylcyclopentyl) phenol with high yield and selectivity were found. When studying the reaction of cycloalkylation of phenol with 1-methylcyclopentene in the presence of a KH-30 catalyst, it was found that a high yield of the target product of 71.2% (for taken phenol), a selectivity of -92.8% (for the target product) was obtained under the following conditions: temperature - 110 ° C, duration reactions - 5 hours, the molar ratio of phenol to 1-methylcyclopentene 1:1, the amount of catalyst 10% based on the taken phenol. The chemical structure of the synthesized para-(1-methylcyclopentyl) phenol was confirmed by IR, 1Н and 13С NMR methods and its physicochemical parameters were determined. A regression mathematical model of the cycloalkylation process was calculated and the parameters of the optimal mode were found. With the calculated optimal values of the input variables found, a control experiment was set up, which made it possible to find the yield values of the target product Y1=78%, which indicates the acceptability of the developed regression model.