屏障电晕放电中的CO2解离:CO2/Ar混合物中高压的影响

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2023-10-27 DOI:10.1007/s11090-023-10411-1
Hamed Mahdikia, Volker Brüser, Milko Schiorlin, Ronny Brandenburg
{"title":"屏障电晕放电中的CO2解离:CO2/Ar混合物中高压的影响","authors":"Hamed Mahdikia,&nbsp;Volker Brüser,&nbsp;Milko Schiorlin,&nbsp;Ronny Brandenburg","doi":"10.1007/s11090-023-10411-1","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of carbon monoxide, oxygen and ozone in a barrier corona discharge (BCD) operating in pure carbon dioxide (CO<sub>2</sub>) and binary mixtures of CO<sub>2</sub> and argon is studied. The asymmetric electrode configuration of the BCDs allows plasma operation at pressures exceeding 1 atm, up to 6 bar, at moderate high-voltage amplitudes below 15 kV. Charge–voltage plots and an equivalent circuit model are employed to characterize the electrical parameters at different pressures and gas compositions. Depending on these conditions and the voltage amplitude, full or partial coverage of the electrodes with plasma is obtained. The existence of an optimum pressure for power dissipation for each given operation voltage amplitude and gas composition can be confirmed and explained by the equivalent circuit model. Increasing the CO<sub>2</sub> concentration in the working gas increases the mean reduced electric field strength E/N while pressure reduces it in the BCD. The CO<sub>2</sub> conversion shows a maximum efficiency of about 4% at 1.5 bar for the gas mixture Ar/CO<sub>2</sub> = 1:1 and a voltage amplitude of about 10 kV. The calculation of thermodynamic equilibrium parameters reveals that a relatively small increase in pressure can affect both, the equilibrium parameters and the reaction rates. As a result, the specific required energy for the reaction (<span>\\(\\Delta \\mathrm{H}/\\mathrm{SEI}\\)</span>) shows an optimum, but only 8% of the electrical input energy is spent for CO<sub>2</sub> dissociation at these optimum conditions.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-023-10411-1.pdf","citationCount":"1","resultStr":"{\"title\":\"CO2 Dissociation in Barrier Corona Discharges: Effect of Elevated Pressures in CO2/Ar Mixtures\",\"authors\":\"Hamed Mahdikia,&nbsp;Volker Brüser,&nbsp;Milko Schiorlin,&nbsp;Ronny Brandenburg\",\"doi\":\"10.1007/s11090-023-10411-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The formation of carbon monoxide, oxygen and ozone in a barrier corona discharge (BCD) operating in pure carbon dioxide (CO<sub>2</sub>) and binary mixtures of CO<sub>2</sub> and argon is studied. The asymmetric electrode configuration of the BCDs allows plasma operation at pressures exceeding 1 atm, up to 6 bar, at moderate high-voltage amplitudes below 15 kV. Charge–voltage plots and an equivalent circuit model are employed to characterize the electrical parameters at different pressures and gas compositions. Depending on these conditions and the voltage amplitude, full or partial coverage of the electrodes with plasma is obtained. The existence of an optimum pressure for power dissipation for each given operation voltage amplitude and gas composition can be confirmed and explained by the equivalent circuit model. Increasing the CO<sub>2</sub> concentration in the working gas increases the mean reduced electric field strength E/N while pressure reduces it in the BCD. The CO<sub>2</sub> conversion shows a maximum efficiency of about 4% at 1.5 bar for the gas mixture Ar/CO<sub>2</sub> = 1:1 and a voltage amplitude of about 10 kV. The calculation of thermodynamic equilibrium parameters reveals that a relatively small increase in pressure can affect both, the equilibrium parameters and the reaction rates. As a result, the specific required energy for the reaction (<span>\\\\(\\\\Delta \\\\mathrm{H}/\\\\mathrm{SEI}\\\\)</span>) shows an optimum, but only 8% of the electrical input energy is spent for CO<sub>2</sub> dissociation at these optimum conditions.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11090-023-10411-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-023-10411-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-023-10411-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

研究了纯二氧化碳(CO2)和二氧化碳和氩气二元混合物中屏障电晕放电(BCD)中一氧化碳、氧气和臭氧的形成。bcd的不对称电极配置允许等离子体在超过1atm,高达6bar的压力下工作,在低于15kv的中等高压幅值下工作。采用电荷电压图和等效电路模型来表征不同压力和气体成分下的电参数。根据这些条件和电压幅值,等离子体可以完全或部分覆盖电极。对于每一个给定的工作电压幅值和气体成分,存在一个最优的功耗压力,可以用等效电路模型来证实和解释。增加工作气体中CO2浓度会增加平均电场强度E/N,而压力会降低BCD中的电场强度E/N。二氧化碳转化的最大效率约为4% at 1.5 bar for the gas mixture Ar/CO2 = 1:1 and a voltage amplitude of about 10 kV. The calculation of thermodynamic equilibrium parameters reveals that a relatively small increase in pressure can affect both, the equilibrium parameters and the reaction rates. As a result, the specific required energy for the reaction (\(\Delta \mathrm{H}/\mathrm{SEI}\)) shows an optimum, but only 8% of the electrical input energy is spent for CO2 dissociation at these optimum conditions.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO2 Dissociation in Barrier Corona Discharges: Effect of Elevated Pressures in CO2/Ar Mixtures

The formation of carbon monoxide, oxygen and ozone in a barrier corona discharge (BCD) operating in pure carbon dioxide (CO2) and binary mixtures of CO2 and argon is studied. The asymmetric electrode configuration of the BCDs allows plasma operation at pressures exceeding 1 atm, up to 6 bar, at moderate high-voltage amplitudes below 15 kV. Charge–voltage plots and an equivalent circuit model are employed to characterize the electrical parameters at different pressures and gas compositions. Depending on these conditions and the voltage amplitude, full or partial coverage of the electrodes with plasma is obtained. The existence of an optimum pressure for power dissipation for each given operation voltage amplitude and gas composition can be confirmed and explained by the equivalent circuit model. Increasing the CO2 concentration in the working gas increases the mean reduced electric field strength E/N while pressure reduces it in the BCD. The CO2 conversion shows a maximum efficiency of about 4% at 1.5 bar for the gas mixture Ar/CO2 = 1:1 and a voltage amplitude of about 10 kV. The calculation of thermodynamic equilibrium parameters reveals that a relatively small increase in pressure can affect both, the equilibrium parameters and the reaction rates. As a result, the specific required energy for the reaction (\(\Delta \mathrm{H}/\mathrm{SEI}\)) shows an optimum, but only 8% of the electrical input energy is spent for CO2 dissociation at these optimum conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Chitosan Hydrogels with Antibacterial and Antifungal Properties: Enhanced Properties by Incorporating of Plasma Activated Water Dielectric Barrier Discharge Plasma Combined with Ce-Ni Mesoporous catalysts for CO2 splitting to CO Assessing the Preservation Effectiveness: A Comparative Study of Plasma Activated Water with Various Preservatives on Capsicum annuum L. (Jalapeño and Pusa Jwala) Recent Advances in Non-Thermal Plasma for Seed Germination, Plant Growth, and Secondary Metabolite Synthesis: A Promising Frontier for Sustainable Agriculture Non-Oxidative Coupling of Methane via Plasma-Catalysis Over M/γ-Al2O3 Catalysts (M = Ni, Fe, Rh, Pt and Pd): Impact of Active Metal and Noble Gas Co-Feeding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1