{"title":"利用谷歌位置数据跟踪COVID-19传播的大数据分析","authors":"Mei Wyin Yaw, Prajindra Sankar Krishnan, Chai Phing Chen, Sieh Kiong Tiong","doi":"10.18080/jtde.v11n3.771","DOIUrl":null,"url":null,"abstract":"According to mobility data that records mobility traffic using location trackers on mobile phones, the COVID-19 epidemic and the adoption of social distance policies have drastically altered people’s visiting patterns. However, rather than the volume of visitors, the transmission is controlled by the frequency and length of concurrent occupation at particular places. Therefore, it is essential to comprehend how people interact in various settings in order to focus legislation, guide contact tracking, and educate prevention initiatives. This study suggests an effective method for reducing the virus’s propagation among university students enrolled on-campus by creating a self-developed Google History Location Extractor and Indicator software based on actual data on people’s movements. The platform enables academics and policymakers to model the results of human mobility and the epidemic condition under various epidemic control measures and assess the potential for future advancements in the epidemic’s spread. It provides tools for identifying prospective contacts, analyzing individual infection risks, and reviewing the success of campus regulations. By more precisely focusing on probable virus carriers during the screening process, the suggested multi-functional platform makes it easier to decide on epidemic control measures, ultimately helping to manage and avoid future outbreaks.","PeriodicalId":37752,"journal":{"name":"Australian Journal of Telecommunications and the Digital Economy","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big Data Analytics in Tracking COVID-19 Spread Utilizing Google Location Data\",\"authors\":\"Mei Wyin Yaw, Prajindra Sankar Krishnan, Chai Phing Chen, Sieh Kiong Tiong\",\"doi\":\"10.18080/jtde.v11n3.771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to mobility data that records mobility traffic using location trackers on mobile phones, the COVID-19 epidemic and the adoption of social distance policies have drastically altered people’s visiting patterns. However, rather than the volume of visitors, the transmission is controlled by the frequency and length of concurrent occupation at particular places. Therefore, it is essential to comprehend how people interact in various settings in order to focus legislation, guide contact tracking, and educate prevention initiatives. This study suggests an effective method for reducing the virus’s propagation among university students enrolled on-campus by creating a self-developed Google History Location Extractor and Indicator software based on actual data on people’s movements. The platform enables academics and policymakers to model the results of human mobility and the epidemic condition under various epidemic control measures and assess the potential for future advancements in the epidemic’s spread. It provides tools for identifying prospective contacts, analyzing individual infection risks, and reviewing the success of campus regulations. By more precisely focusing on probable virus carriers during the screening process, the suggested multi-functional platform makes it easier to decide on epidemic control measures, ultimately helping to manage and avoid future outbreaks.\",\"PeriodicalId\":37752,\"journal\":{\"name\":\"Australian Journal of Telecommunications and the Digital Economy\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Telecommunications and the Digital Economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18080/jtde.v11n3.771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Telecommunications and the Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18080/jtde.v11n3.771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Big Data Analytics in Tracking COVID-19 Spread Utilizing Google Location Data
According to mobility data that records mobility traffic using location trackers on mobile phones, the COVID-19 epidemic and the adoption of social distance policies have drastically altered people’s visiting patterns. However, rather than the volume of visitors, the transmission is controlled by the frequency and length of concurrent occupation at particular places. Therefore, it is essential to comprehend how people interact in various settings in order to focus legislation, guide contact tracking, and educate prevention initiatives. This study suggests an effective method for reducing the virus’s propagation among university students enrolled on-campus by creating a self-developed Google History Location Extractor and Indicator software based on actual data on people’s movements. The platform enables academics and policymakers to model the results of human mobility and the epidemic condition under various epidemic control measures and assess the potential for future advancements in the epidemic’s spread. It provides tools for identifying prospective contacts, analyzing individual infection risks, and reviewing the success of campus regulations. By more precisely focusing on probable virus carriers during the screening process, the suggested multi-functional platform makes it easier to decide on epidemic control measures, ultimately helping to manage and avoid future outbreaks.
期刊介绍:
The Journal of Telecommunications and the Digital Economy (JTDE) is an international, open-access, high quality, peer reviewed journal, indexed by Scopus and Google Scholar, covering innovative research and practice in Telecommunications, Digital Economy and Applications. The mission of JTDE is to further through publication the objective of advancing learning, knowledge and research worldwide. The JTDE publishes peer reviewed papers that may take the following form: *Research Paper - a paper making an original contribution to engineering knowledge. *Special Interest Paper – a report on significant aspects of a major or notable project. *Review Paper for specialists – an overview of a relevant area intended for specialists in the field covered. *Review Paper for non-specialists – an overview of a relevant area suitable for a reader with an electrical/electronics background. *Public Policy Discussion - a paper that identifies or discusses public policy and includes investigation of legislation, regulation and what is happening around the world including best practice *Tutorial Paper – a paper that explains an important subject or clarifies the approach to an area of design or investigation. *Technical Note – a technical note or letter to the Editors that is not sufficiently developed or extensive in scope to constitute a full paper. *Industry Case Study - a paper that provides details of industry practices utilising a case study to provide an understanding of what is occurring and how the outcomes have been achieved. *Discussion – a contribution to discuss a published paper to which the original author''s response will be sought. Historical - a paper covering a historical topic related to telecommunications or the digital economy.