{"title":"超高压输电线接头粗糙表面电接触磨损模拟","authors":"Xianchen Yang, Xinmei Li, Songchen Wang","doi":"10.1177/13506501231212532","DOIUrl":null,"url":null,"abstract":"A novel electrical contact wear simulation method was proposed to characterize the electrical contact wear of fittings in ultra-high-voltage transmission lines by combining line fittings with the Archard wear model and oxidation loss theory. In this method, a three-dimensional (3D) rough body was generated by using the Weierstrass–Mandelbrot fractal function to simulate the contact surface. An electrical contact wear subroutine was developed, and the wear state was updated using arbitrary Lagrangian–Eulerian adaptive grid technology. Finally, finite element software was used to perform thermal stress wear coupled analysis. The results show that the wear volume, wear depth and friction temperature obtained by the rough electric contact model were 2.71 times, 4.21 times and 2.18 times of the common ideal plane model, respectively. In the rough model, the wear depth of the nodes initially accelerated, subsequently slowed down, and again accelerated with time. The friction high temperature region was distributed in a point pattern, and the temperature difference between the contact region and the non-contact region became obvious.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"30 6","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of electrical contact wear on the rough surfaces of ultra-high-voltage transmission line fittings\",\"authors\":\"Xianchen Yang, Xinmei Li, Songchen Wang\",\"doi\":\"10.1177/13506501231212532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel electrical contact wear simulation method was proposed to characterize the electrical contact wear of fittings in ultra-high-voltage transmission lines by combining line fittings with the Archard wear model and oxidation loss theory. In this method, a three-dimensional (3D) rough body was generated by using the Weierstrass–Mandelbrot fractal function to simulate the contact surface. An electrical contact wear subroutine was developed, and the wear state was updated using arbitrary Lagrangian–Eulerian adaptive grid technology. Finally, finite element software was used to perform thermal stress wear coupled analysis. The results show that the wear volume, wear depth and friction temperature obtained by the rough electric contact model were 2.71 times, 4.21 times and 2.18 times of the common ideal plane model, respectively. In the rough model, the wear depth of the nodes initially accelerated, subsequently slowed down, and again accelerated with time. The friction high temperature region was distributed in a point pattern, and the temperature difference between the contact region and the non-contact region became obvious.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"30 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231212532\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231212532","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Simulation of electrical contact wear on the rough surfaces of ultra-high-voltage transmission line fittings
A novel electrical contact wear simulation method was proposed to characterize the electrical contact wear of fittings in ultra-high-voltage transmission lines by combining line fittings with the Archard wear model and oxidation loss theory. In this method, a three-dimensional (3D) rough body was generated by using the Weierstrass–Mandelbrot fractal function to simulate the contact surface. An electrical contact wear subroutine was developed, and the wear state was updated using arbitrary Lagrangian–Eulerian adaptive grid technology. Finally, finite element software was used to perform thermal stress wear coupled analysis. The results show that the wear volume, wear depth and friction temperature obtained by the rough electric contact model were 2.71 times, 4.21 times and 2.18 times of the common ideal plane model, respectively. In the rough model, the wear depth of the nodes initially accelerated, subsequently slowed down, and again accelerated with time. The friction high temperature region was distributed in a point pattern, and the temperature difference between the contact region and the non-contact region became obvious.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).