Ruochen Ge, Lili Cong, Yongping Fu, Bing Wang, Guiyun Shen, Bing Xu, Mingzhou Hu, Han Yu, Jie Zhou, Lu Yang
{"title":"多方面分析揭示了辽代叠谢带丝绸织物的特点","authors":"Ruochen Ge, Lili Cong, Yongping Fu, Bing Wang, Guiyun Shen, Bing Xu, Mingzhou Hu, Han Yu, Jie Zhou, Lu Yang","doi":"10.1186/s40494-023-01064-6","DOIUrl":null,"url":null,"abstract":"Abstract The Liao Dynasty’s highly developed textile industry was characterized as “the best in the world” in ancient Chinese literature. This study analyzed two textiles on a 蹀躞 (DieXie) belt excavated from the No.1 Liao Dynasty noble tomb of Zhangjiayao Forest (Shenyang, China), with one wrapping around the leather belt (T1) and the other on the surface of a leather pouch hanging on the belt (X1). They were identified as silk based on structures by morphological observation and chemical components revealed by Fourier Transform Infrared spectroscopy (FTIR). Proteomics and enzyme-linked immunosorbent assay (ELISA) were used to investigate the animal origin of the silk, and the original color and dyestuffs of T1 were examined by liquid chromatography-mass spectrometer (LC-MS/MS). The results have shown that T1 consists of three layers of Bombyx mori silk plain fabric, and its original color was yellow-red dyed with madder and plants containing flavonoid dyeing tissue, consistent with the color of DieXie belts recorded in the ancient literature. The silk on the pouch is a layer of plain fabric, while the upper layer is embroidery on the Four-end-complex gauze, which was made of twisted Bombyx mori silk. We believe that the silk wrapping around the leather belt was to provide additional comfort and aesthetics after dyeing while protecting the leather, which is prone to warping and moisture. This study suggests that such silk fabrics with high specifications are one of the manifestations of the distinguished status of the tomb owner. The integration of various analytical methods on ancient silk fabrics enables us to learn various information about their textile forms, silk animal origins, colors and dyestuffs, revealing the highly developed silk waving techniques and prosperous costume culture of the Liao Dynasty.","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"7 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-faceted analysis reveals the characteristics of silk fabrics on a Liao Dynasty DieXie belt\",\"authors\":\"Ruochen Ge, Lili Cong, Yongping Fu, Bing Wang, Guiyun Shen, Bing Xu, Mingzhou Hu, Han Yu, Jie Zhou, Lu Yang\",\"doi\":\"10.1186/s40494-023-01064-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Liao Dynasty’s highly developed textile industry was characterized as “the best in the world” in ancient Chinese literature. This study analyzed two textiles on a 蹀躞 (DieXie) belt excavated from the No.1 Liao Dynasty noble tomb of Zhangjiayao Forest (Shenyang, China), with one wrapping around the leather belt (T1) and the other on the surface of a leather pouch hanging on the belt (X1). They were identified as silk based on structures by morphological observation and chemical components revealed by Fourier Transform Infrared spectroscopy (FTIR). Proteomics and enzyme-linked immunosorbent assay (ELISA) were used to investigate the animal origin of the silk, and the original color and dyestuffs of T1 were examined by liquid chromatography-mass spectrometer (LC-MS/MS). The results have shown that T1 consists of three layers of Bombyx mori silk plain fabric, and its original color was yellow-red dyed with madder and plants containing flavonoid dyeing tissue, consistent with the color of DieXie belts recorded in the ancient literature. The silk on the pouch is a layer of plain fabric, while the upper layer is embroidery on the Four-end-complex gauze, which was made of twisted Bombyx mori silk. We believe that the silk wrapping around the leather belt was to provide additional comfort and aesthetics after dyeing while protecting the leather, which is prone to warping and moisture. This study suggests that such silk fabrics with high specifications are one of the manifestations of the distinguished status of the tomb owner. The integration of various analytical methods on ancient silk fabrics enables us to learn various information about their textile forms, silk animal origins, colors and dyestuffs, revealing the highly developed silk waving techniques and prosperous costume culture of the Liao Dynasty.\",\"PeriodicalId\":13109,\"journal\":{\"name\":\"Heritage Science\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heritage Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40494-023-01064-6\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40494-023-01064-6","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Multi-faceted analysis reveals the characteristics of silk fabrics on a Liao Dynasty DieXie belt
Abstract The Liao Dynasty’s highly developed textile industry was characterized as “the best in the world” in ancient Chinese literature. This study analyzed two textiles on a 蹀躞 (DieXie) belt excavated from the No.1 Liao Dynasty noble tomb of Zhangjiayao Forest (Shenyang, China), with one wrapping around the leather belt (T1) and the other on the surface of a leather pouch hanging on the belt (X1). They were identified as silk based on structures by morphological observation and chemical components revealed by Fourier Transform Infrared spectroscopy (FTIR). Proteomics and enzyme-linked immunosorbent assay (ELISA) were used to investigate the animal origin of the silk, and the original color and dyestuffs of T1 were examined by liquid chromatography-mass spectrometer (LC-MS/MS). The results have shown that T1 consists of three layers of Bombyx mori silk plain fabric, and its original color was yellow-red dyed with madder and plants containing flavonoid dyeing tissue, consistent with the color of DieXie belts recorded in the ancient literature. The silk on the pouch is a layer of plain fabric, while the upper layer is embroidery on the Four-end-complex gauze, which was made of twisted Bombyx mori silk. We believe that the silk wrapping around the leather belt was to provide additional comfort and aesthetics after dyeing while protecting the leather, which is prone to warping and moisture. This study suggests that such silk fabrics with high specifications are one of the manifestations of the distinguished status of the tomb owner. The integration of various analytical methods on ancient silk fabrics enables us to learn various information about their textile forms, silk animal origins, colors and dyestuffs, revealing the highly developed silk waving techniques and prosperous costume culture of the Liao Dynasty.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.