基于常见子表达式的稀疏常量矩阵压缩与乘法

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2023-10-13 DOI:10.1109/LES.2023.3323635
Emre Bilgili;Arda Yurdakul
{"title":"基于常见子表达式的稀疏常量矩阵压缩与乘法","authors":"Emre Bilgili;Arda Yurdakul","doi":"10.1109/LES.2023.3323635","DOIUrl":null,"url":null,"abstract":"In deep learning inference, model parameters are pruned and quantized to reduce the model size. Compression methods and common subexpression (CSE) elimination algorithms are applied on sparse constant matrices to deploy the models on low-cost embedded devices. However, the state-of-the-art CSE elimination methods do not scale well for handling large matrices. They reach hours for extracting CSEs in a \n<inline-formula> <tex-math>$200 \\times 200$ </tex-math></inline-formula>\n matrix while their matrix multiplication algorithms execute longer than the conventional matrix multiplication methods. Besides, there exist no compression methods for matrices utilizing CSEs. As a remedy to this problem, a random search-based algorithm is proposed in this letter to extract CSEs in the column pairs of a constant matrix. It produces an adder tree for a \n<inline-formula> <tex-math>$1000 \\times 1000$ </tex-math></inline-formula>\n matrix in a minute. To compress the adder tree, this letter presents a compression format by extending the compressed sparse row (CSR) to include CSEs. While compression rates of more than 50% can be achieved compared to the original CSR format, simulations for a single-core embedded system show that the matrix multiplication execution time can be reduced by 20%.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 2","pages":"82-85"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common Subexpression-Based Compression and Multiplication of Sparse Constant Matrices\",\"authors\":\"Emre Bilgili;Arda Yurdakul\",\"doi\":\"10.1109/LES.2023.3323635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deep learning inference, model parameters are pruned and quantized to reduce the model size. Compression methods and common subexpression (CSE) elimination algorithms are applied on sparse constant matrices to deploy the models on low-cost embedded devices. However, the state-of-the-art CSE elimination methods do not scale well for handling large matrices. They reach hours for extracting CSEs in a \\n<inline-formula> <tex-math>$200 \\\\times 200$ </tex-math></inline-formula>\\n matrix while their matrix multiplication algorithms execute longer than the conventional matrix multiplication methods. Besides, there exist no compression methods for matrices utilizing CSEs. As a remedy to this problem, a random search-based algorithm is proposed in this letter to extract CSEs in the column pairs of a constant matrix. It produces an adder tree for a \\n<inline-formula> <tex-math>$1000 \\\\times 1000$ </tex-math></inline-formula>\\n matrix in a minute. To compress the adder tree, this letter presents a compression format by extending the compressed sparse row (CSR) to include CSEs. While compression rates of more than 50% can be achieved compared to the original CSR format, simulations for a single-core embedded system show that the matrix multiplication execution time can be reduced by 20%.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 2\",\"pages\":\"82-85\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10285457/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10285457/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在深度学习推理中,对模型参数进行剪枝和量化,以减小模型大小。压缩方法和公共子表达(CSE)消除算法适用于稀疏常量矩阵,以便在低成本嵌入式设备上部署模型。然而,最先进的 CSE 消除方法并不能很好地扩展到处理大型矩阵。在一个 200 美元乘以 200 美元的矩阵中提取 CSE 需要数小时,而其矩阵乘法算法的执行时间比传统矩阵乘法更长。此外,目前还没有利用 CSE 的矩阵压缩方法。为解决这一问题,本文提出了一种基于随机搜索的算法,用于提取常量矩阵列对中的 CSE。它能在一分钟内生成 1000 美元乘以 1000 美元矩阵的加法树。为了压缩加法树,这封信提出了一种压缩格式,通过扩展压缩稀疏行(CSR)来包含 CSE。与原始 CSR 格式相比,压缩率可达到 50%以上,而对单核嵌入式系统的仿真表明,矩阵乘法的执行时间可缩短 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Common Subexpression-Based Compression and Multiplication of Sparse Constant Matrices
In deep learning inference, model parameters are pruned and quantized to reduce the model size. Compression methods and common subexpression (CSE) elimination algorithms are applied on sparse constant matrices to deploy the models on low-cost embedded devices. However, the state-of-the-art CSE elimination methods do not scale well for handling large matrices. They reach hours for extracting CSEs in a $200 \times 200$ matrix while their matrix multiplication algorithms execute longer than the conventional matrix multiplication methods. Besides, there exist no compression methods for matrices utilizing CSEs. As a remedy to this problem, a random search-based algorithm is proposed in this letter to extract CSEs in the column pairs of a constant matrix. It produces an adder tree for a $1000 \times 1000$ matrix in a minute. To compress the adder tree, this letter presents a compression format by extending the compressed sparse row (CSR) to include CSEs. While compression rates of more than 50% can be achieved compared to the original CSR format, simulations for a single-core embedded system show that the matrix multiplication execution time can be reduced by 20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Time-Sensitive Networking in Low Latency Cyber-Physical Systems FedTinyWolf -A Memory Efficient Federated Embedded Learning Mechanism SCALLER: Standard Cell Assembled and Local Layout Effect-Based Ring Oscillators Table of Contents IEEE Embedded Systems Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1