无线传感器网络Sink移动模型的性能分析:比较研究

Anas Abu Taleb, Qasem Abu Al-Haija, Ammar Odeh
{"title":"无线传感器网络Sink移动模型的性能分析:比较研究","authors":"Anas Abu Taleb, Qasem Abu Al-Haija, Ammar Odeh","doi":"10.3991/ijim.v17i18.42121","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs), deployed in the area of interest to gather data unattended, comprise numerous tiny, ponderous, and battery-operated sensor nodes (SNs). Numerous research publications presented strategies for extending the lifespan and performance of wireless sensor networks because SNs lifetime depends on limited battery life. One strategy for enhancing the performance of wireless sensor networks is to deploy an energy-rich sink capable of mobility to gather data sensed by stationary SNs. Therefore, several mobility models (MMs) were suggested. The primary objective of this investigation is to compare the effectiveness of wireless sensor networks using two MMs for mobile sinks (MSs): Kohonen’s self-organizing map-based model and the genetic algorithm-based model, in order to find the most suitable conditions under which each one of them can be used. As a result, network performance is investigated using the NS-2 simulator under various scenarios and MS speeds. Additionally, throughput, packet delivery ratio (PDR), and end-to-end (E2E) delay are the metrics used to analyze performance. Finally, messages are forwarded from their sources to the MS using the AODV routing protocol. The results show that the Kohonen-based model is suitable for small networks with moderate speeds of the mobile sink. On the other hand, the genetic algorithm-based model is suitable to be used with medium-sized networks with low speeds of the mobile sink.","PeriodicalId":53486,"journal":{"name":"International Journal of Interactive Mobile Technologies","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Sink Mobility Models for Wireless Sensor Networks: A Comparative Study\",\"authors\":\"Anas Abu Taleb, Qasem Abu Al-Haija, Ammar Odeh\",\"doi\":\"10.3991/ijim.v17i18.42121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks (WSNs), deployed in the area of interest to gather data unattended, comprise numerous tiny, ponderous, and battery-operated sensor nodes (SNs). Numerous research publications presented strategies for extending the lifespan and performance of wireless sensor networks because SNs lifetime depends on limited battery life. One strategy for enhancing the performance of wireless sensor networks is to deploy an energy-rich sink capable of mobility to gather data sensed by stationary SNs. Therefore, several mobility models (MMs) were suggested. The primary objective of this investigation is to compare the effectiveness of wireless sensor networks using two MMs for mobile sinks (MSs): Kohonen’s self-organizing map-based model and the genetic algorithm-based model, in order to find the most suitable conditions under which each one of them can be used. As a result, network performance is investigated using the NS-2 simulator under various scenarios and MS speeds. Additionally, throughput, packet delivery ratio (PDR), and end-to-end (E2E) delay are the metrics used to analyze performance. Finally, messages are forwarded from their sources to the MS using the AODV routing protocol. The results show that the Kohonen-based model is suitable for small networks with moderate speeds of the mobile sink. On the other hand, the genetic algorithm-based model is suitable to be used with medium-sized networks with low speeds of the mobile sink.\",\"PeriodicalId\":53486,\"journal\":{\"name\":\"International Journal of Interactive Mobile Technologies\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Interactive Mobile Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijim.v17i18.42121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Mobile Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijim.v17i18.42121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(wsn),部署在感兴趣的领域无人值守收集数据,包括许多微小,笨重,电池供电的传感器节点(SNs)。许多研究出版物提出了延长无线传感器网络寿命和性能的策略,因为SNs的寿命取决于有限的电池寿命。提高无线传感器网络性能的一种策略是部署一个能够移动的能量丰富的接收器来收集由固定SNs感知的数据。因此,提出了几种迁移率模型。本研究的主要目的是比较无线传感器网络使用两种移动接收器(MSs)的有效性:Kohonen的基于自组织地图的模型和基于遗传算法的模型,以便找到每一种模型都可以使用的最合适的条件。因此,使用NS-2模拟器在各种场景和MS速度下研究网络性能。此外,吞吐量、包交付率(PDR)和端到端(E2E)延迟是用于分析性能的指标。最后,使用AODV路由协议将消息从源转发到MS。结果表明,基于kohonen的模型适用于移动sink速度适中的小型网络。另一方面,基于遗传算法的模型适用于移动sink速度较低的中型网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Sink Mobility Models for Wireless Sensor Networks: A Comparative Study
Wireless sensor networks (WSNs), deployed in the area of interest to gather data unattended, comprise numerous tiny, ponderous, and battery-operated sensor nodes (SNs). Numerous research publications presented strategies for extending the lifespan and performance of wireless sensor networks because SNs lifetime depends on limited battery life. One strategy for enhancing the performance of wireless sensor networks is to deploy an energy-rich sink capable of mobility to gather data sensed by stationary SNs. Therefore, several mobility models (MMs) were suggested. The primary objective of this investigation is to compare the effectiveness of wireless sensor networks using two MMs for mobile sinks (MSs): Kohonen’s self-organizing map-based model and the genetic algorithm-based model, in order to find the most suitable conditions under which each one of them can be used. As a result, network performance is investigated using the NS-2 simulator under various scenarios and MS speeds. Additionally, throughput, packet delivery ratio (PDR), and end-to-end (E2E) delay are the metrics used to analyze performance. Finally, messages are forwarded from their sources to the MS using the AODV routing protocol. The results show that the Kohonen-based model is suitable for small networks with moderate speeds of the mobile sink. On the other hand, the genetic algorithm-based model is suitable to be used with medium-sized networks with low speeds of the mobile sink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Interactive Mobile Technologies
International Journal of Interactive Mobile Technologies Computer Science-Computer Networks and Communications
CiteScore
5.20
自引率
0.00%
发文量
250
审稿时长
8 weeks
期刊介绍: This interdisciplinary journal focuses on the exchange of relevant trends and research results and presents practical experiences gained while developing and testing elements of interactive mobile technologies. It bridges the gap between pure academic research journals and more practical publications. So it covers the full range from research, application development to experience reports and product descriptions. Fields of interest include, but are not limited to: -Future trends in m-technologies- Architectures and infrastructures for ubiquitous mobile systems- Services for mobile networks- Industrial Applications- Mobile Computing- Adaptive and Adaptable environments using mobile devices- Mobile Web and video Conferencing- M-learning applications- M-learning standards- Life-long m-learning- Mobile technology support for educator and student- Remote and virtual laboratories- Mobile measurement technologies- Multimedia and virtual environments- Wireless and Ad-hoc Networks- Smart Agent Technologies- Social Impact of Current and Next-generation Mobile Technologies- Facilitation of Mobile Learning- Cost-effectiveness- Real world experiences- Pilot projects, products and applications
期刊最新文献
What My Friends Are Up To? The Relationship between Social Media Usage and Fear of Missing Out among Undergraduates Revolution in Engineering Education through Android-Based Learning Media for Mobile Learning: Practicality of Mobile Learning Media to Improve Electrical Measuring Skills in the Industrial Age 4.0 Enhancing Tourist Experiences in Crowded Destinations through Mobile Augmented Reality: A Comparative Field Study Data-Driven Insights in Higher Education: Exploring the Synergy of Big Data Analytics and Mobile Applications Effects of Social Media Use on Adolescent Psychological Well-Being: A Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1