Piotr Legutko, Natalia Zwada, Marcin Kozieł, Marek Michalik, Andrzej Adamski
{"title":"尖晶石结构锰铁混合氧化物作为煤烟燃烧催化剂","authors":"Piotr Legutko, Natalia Zwada, Marcin Kozieł, Marek Michalik, Andrzej Adamski","doi":"10.2174/2211544712666230130104257","DOIUrl":null,"url":null,"abstract":"Background: An abatement of emission of particulate matter (mainly soot) is a challenge for the scientific community. An active and cheap catalytic system for soot combustion can help solve this problem. Objective: The aim of this study was to investigate the influence of the composition of a series of Mn3-xFexO4 (x = 0 - 3) oxides of spinel structure on their catalytic properties in soot combustion. Methods: Samples were synthesized by coprecipitation followed by a consecutive thermal treatment. Their structure was verified by X-ray diffraction and Raman spectroscopy. The obtained catalysts were tested in model soot oxidation (Printex U) in both tight and loose contact modes. Results: It was found that different mechanisms of soot combustion occurred dependently on a chosen contact mode. Conclusion: It was confirmed that in the case of tight contact (TC), a coexistence of divalent manganese and iron species was decisive for the catalytic activity, whereas a presence of trivalent manganese centers was crucial in the case of loose contact (LC). Mn1.2Fe1.8O4 was found to be the most active catalyst.","PeriodicalId":10862,"journal":{"name":"Current Catalysis","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese-Iron Mixed Oxides of Spinel Structure as Soot Combustion Catalysts\",\"authors\":\"Piotr Legutko, Natalia Zwada, Marcin Kozieł, Marek Michalik, Andrzej Adamski\",\"doi\":\"10.2174/2211544712666230130104257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: An abatement of emission of particulate matter (mainly soot) is a challenge for the scientific community. An active and cheap catalytic system for soot combustion can help solve this problem. Objective: The aim of this study was to investigate the influence of the composition of a series of Mn3-xFexO4 (x = 0 - 3) oxides of spinel structure on their catalytic properties in soot combustion. Methods: Samples were synthesized by coprecipitation followed by a consecutive thermal treatment. Their structure was verified by X-ray diffraction and Raman spectroscopy. The obtained catalysts were tested in model soot oxidation (Printex U) in both tight and loose contact modes. Results: It was found that different mechanisms of soot combustion occurred dependently on a chosen contact mode. Conclusion: It was confirmed that in the case of tight contact (TC), a coexistence of divalent manganese and iron species was decisive for the catalytic activity, whereas a presence of trivalent manganese centers was crucial in the case of loose contact (LC). Mn1.2Fe1.8O4 was found to be the most active catalyst.\",\"PeriodicalId\":10862,\"journal\":{\"name\":\"Current Catalysis\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2211544712666230130104257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2211544712666230130104257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Manganese-Iron Mixed Oxides of Spinel Structure as Soot Combustion Catalysts
Background: An abatement of emission of particulate matter (mainly soot) is a challenge for the scientific community. An active and cheap catalytic system for soot combustion can help solve this problem. Objective: The aim of this study was to investigate the influence of the composition of a series of Mn3-xFexO4 (x = 0 - 3) oxides of spinel structure on their catalytic properties in soot combustion. Methods: Samples were synthesized by coprecipitation followed by a consecutive thermal treatment. Their structure was verified by X-ray diffraction and Raman spectroscopy. The obtained catalysts were tested in model soot oxidation (Printex U) in both tight and loose contact modes. Results: It was found that different mechanisms of soot combustion occurred dependently on a chosen contact mode. Conclusion: It was confirmed that in the case of tight contact (TC), a coexistence of divalent manganese and iron species was decisive for the catalytic activity, whereas a presence of trivalent manganese centers was crucial in the case of loose contact (LC). Mn1.2Fe1.8O4 was found to be the most active catalyst.