时间序列分析方法的有效性比较:sma、wma、ema、ewma和卡尔曼滤波进行数据分析

Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk
{"title":"时间序列分析方法的有效性比较:sma、wma、ema、ewma和卡尔曼滤波进行数据分析","authors":"Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk","doi":"10.35784/iapgos.3652","DOIUrl":null,"url":null,"abstract":"In time series analysis, signal processing, and financial analysis, simple moving average (SMA), weighted moving average (WMA), exponential moving average (EMA), exponential weighted moving average (EWMA), and Kalman filter are widely used methods. Each method has its own strengths and weaknesses, and the choice of method depends on the specific application and data characteristics. It is important for researchers and practitioners to understand the properties and limitations of these methods in order to make informed decisions when analyzing time series data. This study investigates the effectiveness of time series analysis methods using data modeled with a known exponential function with overlaid random noise. This approach allows for control of the underlying trend in the data while introducing the variability characteristic of real-world data. The relationships were written using scripts for the construction of dependencies, and graphical interpretation of the results is provided.","PeriodicalId":53131,"journal":{"name":"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS\",\"authors\":\"Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk\",\"doi\":\"10.35784/iapgos.3652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In time series analysis, signal processing, and financial analysis, simple moving average (SMA), weighted moving average (WMA), exponential moving average (EMA), exponential weighted moving average (EWMA), and Kalman filter are widely used methods. Each method has its own strengths and weaknesses, and the choice of method depends on the specific application and data characteristics. It is important for researchers and practitioners to understand the properties and limitations of these methods in order to make informed decisions when analyzing time series data. This study investigates the effectiveness of time series analysis methods using data modeled with a known exponential function with overlaid random noise. This approach allows for control of the underlying trend in the data while introducing the variability characteristic of real-world data. The relationships were written using scripts for the construction of dependencies, and graphical interpretation of the results is provided.\",\"PeriodicalId\":53131,\"journal\":{\"name\":\"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/iapgos.3652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka Automatyka Pomiary w Gospodarce i Ochronie Srodowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.3652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在时间序列分析、信号处理和金融分析中,简单移动平均(SMA)、加权移动平均(WMA)、指数移动平均(EMA)、指数加权移动平均(EWMA)和卡尔曼滤波是被广泛使用的方法。每种方法都有自己的优点和缺点,方法的选择取决于具体的应用和数据特点。为了在分析时间序列数据时做出明智的决策,研究人员和实践者了解这些方法的特性和局限性是很重要的。本研究探讨了时间序列分析方法的有效性,使用已知的指数函数和覆盖随机噪声的数据建模。这种方法允许控制数据中的潜在趋势,同时引入真实世界数据的可变性特征。这些关系是使用脚本编写的,用于构建依赖关系,并提供了结果的图形化解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS
In time series analysis, signal processing, and financial analysis, simple moving average (SMA), weighted moving average (WMA), exponential moving average (EMA), exponential weighted moving average (EWMA), and Kalman filter are widely used methods. Each method has its own strengths and weaknesses, and the choice of method depends on the specific application and data characteristics. It is important for researchers and practitioners to understand the properties and limitations of these methods in order to make informed decisions when analyzing time series data. This study investigates the effectiveness of time series analysis methods using data modeled with a known exponential function with overlaid random noise. This approach allows for control of the underlying trend in the data while introducing the variability characteristic of real-world data. The relationships were written using scripts for the construction of dependencies, and graphical interpretation of the results is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
40
审稿时长
10 weeks
期刊最新文献
MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS RESEARCH ON CALCULATION OPTIMIZATION METHODS USED IN COMPUTER GAMES DEVELOPMENT REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS SENSORS – IMPLEMENTATION AND RESULTS DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS PV PANEL COOLING USING STACK EFFECT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1