Dmytro Nykonenko, Oleh Yatsuk, Laura Guidorzi, Alessandro Lo Giudice, Francesca Tansella, Ludovica Pia Cesareo, Giusi Sorrentino, Patrizia Davit, Monica Gulmini, Alessandro Re
{"title":"霍蒂察岛(乌克兰)斯基泰坟墓中的玻璃珠:通过3D成像了解珠的制作","authors":"Dmytro Nykonenko, Oleh Yatsuk, Laura Guidorzi, Alessandro Lo Giudice, Francesca Tansella, Ludovica Pia Cesareo, Giusi Sorrentino, Patrizia Davit, Monica Gulmini, Alessandro Re","doi":"10.1186/s40494-023-01078-0","DOIUrl":null,"url":null,"abstract":"Abstract Four glass beads from a Scythian burial on the island of Khortytsia (Southern Ukraine) were subjected to 3D imaging using micro-CT and photogrammetry. The aim was to reconstruct the process used to produce and decorate the beads by detecting and interpreting the traces left by the technological processes on the bead surface and in the glass body. It turned out that all the beads were obtained by winding hot glass around the mandrel. The distribution, size and shape of the bubbles in the glass matrix revealed by the micro-CT scans and the features observed during a thorough examination of the photogrammetric models allowed us to follow the movements of the bead maker during the formation of the bead body and its decoration, highlighting several details of the production processes such as the number of the superimposed layers and the direction of the rotation of the mandrel during both the formation of the body and the decoration of the bead. Some information about the tools also emerged, with particular reference to the shape of the mandrel, the possible use of a releasing agent and how tools were used to decorate the surface or to remove the beads from the mandrel. According to the archaeological classification, the beads considered here belong to three different types, that are considered chronological indicators of the fourth century BCE and are found in archaeological sites spread over an area extending for several thousand kilometers from the Black Sea coast to the Ural Mountains. This work enriches the knowledge of the micromorphology of beads found in Eastern Europe, which is rarely discussed in the scientific literature on the archaeological glass beads.","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"88 7","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glass beads from a Scythian grave on the island of Khortytsia (Zaporizhzhia, Ukraine): insights into bead making through 3D imaging\",\"authors\":\"Dmytro Nykonenko, Oleh Yatsuk, Laura Guidorzi, Alessandro Lo Giudice, Francesca Tansella, Ludovica Pia Cesareo, Giusi Sorrentino, Patrizia Davit, Monica Gulmini, Alessandro Re\",\"doi\":\"10.1186/s40494-023-01078-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Four glass beads from a Scythian burial on the island of Khortytsia (Southern Ukraine) were subjected to 3D imaging using micro-CT and photogrammetry. The aim was to reconstruct the process used to produce and decorate the beads by detecting and interpreting the traces left by the technological processes on the bead surface and in the glass body. It turned out that all the beads were obtained by winding hot glass around the mandrel. The distribution, size and shape of the bubbles in the glass matrix revealed by the micro-CT scans and the features observed during a thorough examination of the photogrammetric models allowed us to follow the movements of the bead maker during the formation of the bead body and its decoration, highlighting several details of the production processes such as the number of the superimposed layers and the direction of the rotation of the mandrel during both the formation of the body and the decoration of the bead. Some information about the tools also emerged, with particular reference to the shape of the mandrel, the possible use of a releasing agent and how tools were used to decorate the surface or to remove the beads from the mandrel. According to the archaeological classification, the beads considered here belong to three different types, that are considered chronological indicators of the fourth century BCE and are found in archaeological sites spread over an area extending for several thousand kilometers from the Black Sea coast to the Ural Mountains. This work enriches the knowledge of the micromorphology of beads found in Eastern Europe, which is rarely discussed in the scientific literature on the archaeological glass beads.\",\"PeriodicalId\":13109,\"journal\":{\"name\":\"Heritage Science\",\"volume\":\"88 7\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heritage Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40494-023-01078-0\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40494-023-01078-0","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Glass beads from a Scythian grave on the island of Khortytsia (Zaporizhzhia, Ukraine): insights into bead making through 3D imaging
Abstract Four glass beads from a Scythian burial on the island of Khortytsia (Southern Ukraine) were subjected to 3D imaging using micro-CT and photogrammetry. The aim was to reconstruct the process used to produce and decorate the beads by detecting and interpreting the traces left by the technological processes on the bead surface and in the glass body. It turned out that all the beads were obtained by winding hot glass around the mandrel. The distribution, size and shape of the bubbles in the glass matrix revealed by the micro-CT scans and the features observed during a thorough examination of the photogrammetric models allowed us to follow the movements of the bead maker during the formation of the bead body and its decoration, highlighting several details of the production processes such as the number of the superimposed layers and the direction of the rotation of the mandrel during both the formation of the body and the decoration of the bead. Some information about the tools also emerged, with particular reference to the shape of the mandrel, the possible use of a releasing agent and how tools were used to decorate the surface or to remove the beads from the mandrel. According to the archaeological classification, the beads considered here belong to three different types, that are considered chronological indicators of the fourth century BCE and are found in archaeological sites spread over an area extending for several thousand kilometers from the Black Sea coast to the Ural Mountains. This work enriches the knowledge of the micromorphology of beads found in Eastern Europe, which is rarely discussed in the scientific literature on the archaeological glass beads.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.