{"title":"优化云环境中的集群方法","authors":"Abdel-Rahman Al-Ghuwairi, Dimah Al-Fraihat, Yousef Sharrab, Yazeed Kreishan, Ayoub Alsarhan, Hasan Idhaim, Ayman Qahmash","doi":"10.3991/ijim.v17i19.42029","DOIUrl":null,"url":null,"abstract":"This study focuses on the challenge of developing abstract models to differentiate various cloud resources. It explores the advancements in cloud products that offer specialized services to meet specific external needs. The study proposes a new approach to request processing in clusters, improving downtime, load distribution, and overall performance. A comparison of three clustering approaches is conducted: local single cluster, local multiple clusters, and multiple cloud clusters. Performance, scalability, fault tolerance, resource allocation, availability, and cost-effectiveness are evaluated through experiments with 50 requests. All three approaches achieve a 100% success rate, but processing times vary. The local single cluster has the longest duration, while the local multiple clusters and multiple cloud clusters perform better and offer faster processing, scalability, fault tolerance, and availability. From a cost perspective, the local single cluster and local multiple clusters incur capital and operational expenses, while the multiple cloud clusters follow a pay-as-you-go model. Overall, the local multiple clusters and multiple cloud clusters outperform the local single cluster in terms of performance, scalability, fault tolerance, resource allocation, availability, and cost-effectiveness. These findings provide valuable insights for selecting appropriate clustering strategies in cloud environments.","PeriodicalId":53486,"journal":{"name":"International Journal of Interactive Mobile Technologies","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Clustering Approaches in Cloud Environments\",\"authors\":\"Abdel-Rahman Al-Ghuwairi, Dimah Al-Fraihat, Yousef Sharrab, Yazeed Kreishan, Ayoub Alsarhan, Hasan Idhaim, Ayman Qahmash\",\"doi\":\"10.3991/ijim.v17i19.42029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the challenge of developing abstract models to differentiate various cloud resources. It explores the advancements in cloud products that offer specialized services to meet specific external needs. The study proposes a new approach to request processing in clusters, improving downtime, load distribution, and overall performance. A comparison of three clustering approaches is conducted: local single cluster, local multiple clusters, and multiple cloud clusters. Performance, scalability, fault tolerance, resource allocation, availability, and cost-effectiveness are evaluated through experiments with 50 requests. All three approaches achieve a 100% success rate, but processing times vary. The local single cluster has the longest duration, while the local multiple clusters and multiple cloud clusters perform better and offer faster processing, scalability, fault tolerance, and availability. From a cost perspective, the local single cluster and local multiple clusters incur capital and operational expenses, while the multiple cloud clusters follow a pay-as-you-go model. Overall, the local multiple clusters and multiple cloud clusters outperform the local single cluster in terms of performance, scalability, fault tolerance, resource allocation, availability, and cost-effectiveness. These findings provide valuable insights for selecting appropriate clustering strategies in cloud environments.\",\"PeriodicalId\":53486,\"journal\":{\"name\":\"International Journal of Interactive Mobile Technologies\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Interactive Mobile Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijim.v17i19.42029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Mobile Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijim.v17i19.42029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Optimizing Clustering Approaches in Cloud Environments
This study focuses on the challenge of developing abstract models to differentiate various cloud resources. It explores the advancements in cloud products that offer specialized services to meet specific external needs. The study proposes a new approach to request processing in clusters, improving downtime, load distribution, and overall performance. A comparison of three clustering approaches is conducted: local single cluster, local multiple clusters, and multiple cloud clusters. Performance, scalability, fault tolerance, resource allocation, availability, and cost-effectiveness are evaluated through experiments with 50 requests. All three approaches achieve a 100% success rate, but processing times vary. The local single cluster has the longest duration, while the local multiple clusters and multiple cloud clusters perform better and offer faster processing, scalability, fault tolerance, and availability. From a cost perspective, the local single cluster and local multiple clusters incur capital and operational expenses, while the multiple cloud clusters follow a pay-as-you-go model. Overall, the local multiple clusters and multiple cloud clusters outperform the local single cluster in terms of performance, scalability, fault tolerance, resource allocation, availability, and cost-effectiveness. These findings provide valuable insights for selecting appropriate clustering strategies in cloud environments.
期刊介绍:
This interdisciplinary journal focuses on the exchange of relevant trends and research results and presents practical experiences gained while developing and testing elements of interactive mobile technologies. It bridges the gap between pure academic research journals and more practical publications. So it covers the full range from research, application development to experience reports and product descriptions. Fields of interest include, but are not limited to: -Future trends in m-technologies- Architectures and infrastructures for ubiquitous mobile systems- Services for mobile networks- Industrial Applications- Mobile Computing- Adaptive and Adaptable environments using mobile devices- Mobile Web and video Conferencing- M-learning applications- M-learning standards- Life-long m-learning- Mobile technology support for educator and student- Remote and virtual laboratories- Mobile measurement technologies- Multimedia and virtual environments- Wireless and Ad-hoc Networks- Smart Agent Technologies- Social Impact of Current and Next-generation Mobile Technologies- Facilitation of Mobile Learning- Cost-effectiveness- Real world experiences- Pilot projects, products and applications