下面是什么?基于原子力显微镜的纳米加工研究揭示超薄膜的亚表面铁电畴结构

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Superlattices and Microstructures Pub Date : 2023-01-01 DOI:10.20517/microstructures.2023.41
Lynette Keeney, Louise Colfer, Debismita Dutta, Michael Schmidt, Guannan Wei
{"title":"下面是什么?基于原子力显微镜的纳米加工研究揭示超薄膜的亚表面铁电畴结构","authors":"Lynette Keeney, Louise Colfer, Debismita Dutta, Michael Schmidt, Guannan Wei","doi":"10.20517/microstructures.2023.41","DOIUrl":null,"url":null,"abstract":"Multiferroic materials, encompassing simultaneous ferroelectric and ferromagnetic polarization states, are enticing multi-state materials for memory scaling beyond existing technologies. Aurivillius phase B6TFMO (Bi6TixFeyMnzO18) is a unique room temperature multiferroic material that could ideally be suited to future production of revolutionary memory devices. As miniaturization of electronic devices continues, it is crucial to characterize ferroelectric domain configurations at very small (sub-10 nm) thickness. Direct liquid injection chemical vapor deposition allows for frontier development of ultrathin films at fundamental (close to unit cell) dimensions. However, layer-by-layer growth of ultrathin complex oxides is subject to the formation of surface contaminants and 2D islands and pits, which can obscure visualization of domain patterns using piezoresponse force microscopy (PFM). Herein, we apply force from a sufficiently stiff diamond cantilever while scanning over ultrathin films to perform atomic force microscopy (AFM)-based nano-machining of the surface layers. Subsequent lateral PFM imaging of sub-surface layers uncovers 45° orientated striped twin domains, entirely distinct from the randomly configured piezoresponse observed for the pristine film surface. Furthermore, our investigations indicate that these sub-surface domain structures persist along the in-plane directions throughout the film depth down to thicknesses of less than half of an Aurivillius phase unit cell (˂ 2.5 nm). Thus, AFM-based nano-machining in conjunction with PFM allows demonstration of stable in-plane ferroelectric domains at thicknesses lower than previously determined for multiferroic B6TFMO. These findings demonstrate the technological potential of Aurivillius phase B6TFMO for future miniaturized memory storage devices. Next-generation devices based on ultrathin multiferroic tunnel junctions are projected.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"42 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What lies beneath? Investigations of atomic force microscopy-based nano-machining to reveal sub-surface ferroelectric domain configurations in ultrathin films\",\"authors\":\"Lynette Keeney, Louise Colfer, Debismita Dutta, Michael Schmidt, Guannan Wei\",\"doi\":\"10.20517/microstructures.2023.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiferroic materials, encompassing simultaneous ferroelectric and ferromagnetic polarization states, are enticing multi-state materials for memory scaling beyond existing technologies. Aurivillius phase B6TFMO (Bi6TixFeyMnzO18) is a unique room temperature multiferroic material that could ideally be suited to future production of revolutionary memory devices. As miniaturization of electronic devices continues, it is crucial to characterize ferroelectric domain configurations at very small (sub-10 nm) thickness. Direct liquid injection chemical vapor deposition allows for frontier development of ultrathin films at fundamental (close to unit cell) dimensions. However, layer-by-layer growth of ultrathin complex oxides is subject to the formation of surface contaminants and 2D islands and pits, which can obscure visualization of domain patterns using piezoresponse force microscopy (PFM). Herein, we apply force from a sufficiently stiff diamond cantilever while scanning over ultrathin films to perform atomic force microscopy (AFM)-based nano-machining of the surface layers. Subsequent lateral PFM imaging of sub-surface layers uncovers 45° orientated striped twin domains, entirely distinct from the randomly configured piezoresponse observed for the pristine film surface. Furthermore, our investigations indicate that these sub-surface domain structures persist along the in-plane directions throughout the film depth down to thicknesses of less than half of an Aurivillius phase unit cell (˂ 2.5 nm). Thus, AFM-based nano-machining in conjunction with PFM allows demonstration of stable in-plane ferroelectric domains at thicknesses lower than previously determined for multiferroic B6TFMO. These findings demonstrate the technological potential of Aurivillius phase B6TFMO for future miniaturized memory storage devices. Next-generation devices based on ultrathin multiferroic tunnel junctions are projected.\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2023.41\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.41","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

多铁性材料,包括同时的铁电和铁磁极化状态,是诱人的多态材料的存储扩展超越现有的技术。Aurivillius相B6TFMO (Bi6TixFeyMnzO18)是一种独特的室温多铁性材料,可以理想地适用于未来革命性存储器件的生产。随着电子器件的不断小型化,表征非常小(低于10纳米)厚度的铁电畴结构至关重要。直接液体注入化学气相沉积允许超薄膜在基本(接近单位电池)尺寸的前沿发展。然而,超薄复合氧化物的逐层生长受到表面污染物和2D岛和坑的形成的影响,这可能会模糊使用压电响应力显微镜(PFM)的畴图案的可视化。在这里,我们在超薄薄膜扫描的同时,从一个足够坚硬的金刚石悬臂施加力,对表层进行基于原子力显微镜(AFM)的纳米加工。随后对亚表层的横向PFM成像发现了45°取向的条纹双畴,与原始膜表面观察到的随机配置的压电响应完全不同。此外,我们的研究表明,这些亚表面结构在整个薄膜深度沿平面方向持续存在,厚度小于一个奥瑞维利乌斯相单位电池的一半(小于2.5 nm)。因此,基于afm的纳米加工与PFM相结合,可以在厚度低于先前确定的多铁性B6TFMO的厚度下展示稳定的平面内铁电畴。这些发现证明了Aurivillius phase B6TFMO在未来小型化存储设备中的技术潜力。提出了基于超薄多铁隧道结的下一代器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What lies beneath? Investigations of atomic force microscopy-based nano-machining to reveal sub-surface ferroelectric domain configurations in ultrathin films
Multiferroic materials, encompassing simultaneous ferroelectric and ferromagnetic polarization states, are enticing multi-state materials for memory scaling beyond existing technologies. Aurivillius phase B6TFMO (Bi6TixFeyMnzO18) is a unique room temperature multiferroic material that could ideally be suited to future production of revolutionary memory devices. As miniaturization of electronic devices continues, it is crucial to characterize ferroelectric domain configurations at very small (sub-10 nm) thickness. Direct liquid injection chemical vapor deposition allows for frontier development of ultrathin films at fundamental (close to unit cell) dimensions. However, layer-by-layer growth of ultrathin complex oxides is subject to the formation of surface contaminants and 2D islands and pits, which can obscure visualization of domain patterns using piezoresponse force microscopy (PFM). Herein, we apply force from a sufficiently stiff diamond cantilever while scanning over ultrathin films to perform atomic force microscopy (AFM)-based nano-machining of the surface layers. Subsequent lateral PFM imaging of sub-surface layers uncovers 45° orientated striped twin domains, entirely distinct from the randomly configured piezoresponse observed for the pristine film surface. Furthermore, our investigations indicate that these sub-surface domain structures persist along the in-plane directions throughout the film depth down to thicknesses of less than half of an Aurivillius phase unit cell (˂ 2.5 nm). Thus, AFM-based nano-machining in conjunction with PFM allows demonstration of stable in-plane ferroelectric domains at thicknesses lower than previously determined for multiferroic B6TFMO. These findings demonstrate the technological potential of Aurivillius phase B6TFMO for future miniaturized memory storage devices. Next-generation devices based on ultrathin multiferroic tunnel junctions are projected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
期刊最新文献
Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics Influence of hydrogel and porous scaffold on the magnetic thermal property and anticancer effect of Fe3O4 nanoparticles Magnetic structures and correlated physical properties in antiperovskites Cryogenic atom probe tomography and its applications: a review Scanning transmission electron microscopy for advanced characterization of ferroic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1